**Page description appears here**

“Handling State and Output Constraints in MPC Using Time-dependent Weights”

Authors: Morten Hovd and Richard D. Braatz,
Affiliation: NTNU, Department of Engineering Cybernetics and University of Illinois at Urbana-Champaign
Reference: 2004, Vol 25, No 2, pp. 67-84.

     Valid XHTML 1.0 Strict

Keywords: Model predictive control; constraints; inverse response; penalty functions

Abstract: A popular method for handling state and output constraints in a model predictive control (MPC) algorithm is to use ´soft constraints´, in which penalty terms are added directly to the objective function. Improved closed loop performance can be obtained for plants with nontninimum phase zeros by modifying the MPC formulation to include suitably-designed time-dependent weights on the penalty terms associated with the state and output constraints. When the penalty terms are written in terms of the ´worst-ease´ l-infinity norm, incorporating the appropriate time dependence into the weights provides much better closed loop performance. The approach is illustrated using two multivariable plants with nonminimum phase transmission zeros, where the time-dependent weights cause the open loop predictions to coincide with closed loop predictions, which results in a reduction of output constraint violations.

PDF PDF (1677 Kb)        DOI: 10.4173/mic.2004.2.1

DOI forward links to this article:
  [1] Fernando V. Lima and Christos Georgakis (2010), doi:10.1016/j.jprocont.2010.04.008
  [2] Fernando V. Lima and Christos Georgakis (2008), doi:10.1016/j.jprocont.2007.09.004
  [3] Fernando V. Lima, Zhenya Jia, Marianthi Ierapetritou and Christos Georgakis (2009), doi:10.1002/aic.12021
  [4] Fernando V. Lima, Christos Georgakis, Julie F. Smith, Phillip D. Schnelle and David R. Vinson (2010), doi:10.1002/aic.11897

[1] ALLWRIGHT, J. C. PAPAVASILIOU, G. C. (1992). On linear programming and robust model predictive control using impulse responses, Systems and Control Letters, 18: 159-164 doi:10.1016/0167-6911(92)90020-S
[2] CAMPO, P. J. MORARI, M. (1986). Infinity-norm formulation of model predictive control problems, Proc of the American Control Conf, pp. 339-343.New York: IEEE Press.
[3] DAVE, P., DOYLE, F. J., III PEKNY, J. F. (1999). Customization strategies for the solution of linear programming problems arising from large scale model predictive control of a paper machine, J of Process Control, 9: 385-396 doi:10.1016/S0959-1524(99)00011-6
[4] DE OLIVEIRA, N. M. C. BIEGLER, L T. (1994). Constraint handling and stability properties of model-predictive control, AlChE J., 40: 1138-1155.
[5] FEATHERSTONE, A.P., VANANTWERP, J. G. BRAATZ, R. D. (2000). Identification and Control of Sheet and Film Processes, London, UK: Springer Verlag.
[6] GARCIA, C. E., PRETT, D.M. MORARI, M. (1989). Model predictive control: Theory and practice-A survey, Automatica, 25: 335-348 doi:10.1016/0005-1098(89)90002-2
[7] HOVD, M. BRAATZ, R. D. (2001). On the use of soft constraints in MPC controllers for plants with inverse response, Proc. of the 61h IFAC Symp. on Dynamics and Control of Process Systems.Kidlington, UK: Elsevier Science, in press.
[8] MORARI, M. ZAFIRIOU, E. (1989). Robust Process Control, Englewood Cliffs, NJ: Prentice-Hall.
[9] PERESSINI, A. L., SULLIVAN, F. E. UHL, J. J., JR (1988). The Mathematics of Nonlinear Programming, New York: Springer-Verlag.
[10] RAWLINGS, J. B. (1999). Tutorial: Model predictive control technology, Proc. of the American Control Conf.Piscataway, New Jersey, pp. 662-676, IEEE Press.
[11] RAWLINGS, J. B. MUSKE, K.R. (1993). The stability of constrained receding horizon control, IEEE Trans. on Automatic Control, 3.10: 1512-1516 doi:10.1109/9.241565
[12] RICKER, N. L., SUBRAHMANIAN, T. SIM, T. (1989). Case studies of model-predictive control in pulp and paper production, Proc. of the IFAC Workshop on Model Based Process Control (T. J. McAvoy, Y. Arkun and& E. Zafiriou, eds.), pp. 13-22 (Oxford, UK: Pergamon Press).
[13] SKOGESTAD, S. POSTLETHWAITE, I. (1996). Multivariable Feedback Control: Analysis and Design, New York: John Wiley and& Sons.
[14] SCOKAERT, P.O.M. RAWLINGS, J. B. (1999). Feasibility issues in linear model predictive control, AIChE J.,45:1649-1659 doi:10.1002/aic.690450805
[15] VANANTWERP, J.G. BRAATZ, R. D. (2000). Fast model predictive control of sheet and film processes, IEEE Trans. on Control Systems ?Technology; 8:408-417.
[16] VANANTWERP, J.G. BRAATZ, R. D. (2000). Model predictive control of large scale processes, J. of Process Control, 10:1-8 doi:10.1016/S0959-1524(99)00050-5
[17] VUTHANDAM, P., GENCELI, H. NIKOLAOU, M. (1994). Analysis and synthesis methods for robust model predictive control, Proc. of the IFAC Symp. on Advanced Control of Chemical Processes, pp. 167-172.Kidlington, UK: Elsevier Science.
[18] ZAFIRIOU, E. MARCHAL, A.L. (1991). Stability of SISO quadratic dynamic matrix control with hard output constraints, AIChE J., 37:1550-1560 doi:10.1002/aic.690371012
[19] ZHENG, A. MORARI, M. (1995). Stability of model predictive control with mixed constraints, IEEE Trans. on Automatic Control, 40:1818-1823 doi:10.1109/9.467664

  title={{Handling State and Output Constraints in MPC Using Time-dependent Weights}},
  author={Hovd, Morten and Braatz, Richard D.},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}


Oct 2018: MIC reaches 3000 DOI Forward Links. The last 1000 took 2 years and 5 months.

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.

July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.

Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.

Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.

Jan 2012: Follow MIC on your smartphone by using the RSS feed.


July 2011: MIC passes 1000 ISI Web of Science citations.

Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.

Dec 2009: A MIC group is created at LinkedIn and Twitter.

Oct 2009: MIC is now fully updated in ISI Web of Knowledge.