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A popular method for handling state and output constraints in a model predictive
control (MPC) algorithm is to use ‘soft constraints’, in which penalty terms are
added directly to the objective function. Improved closed loop performance can
be obtained for plants with nonminimum phase zeros by modifying the MPC
formulation to include suitably-designed time-dependent weights on the penalty
terms associated with the state and output constraints. When the penalty terms
are written in terms of the ‘worst-case’ [,-norm, incorporating the appropriate
time dependence into the weights provides much better closed loop performance.
The approach is illustrated using two multivariable plants with nonminimum
phase transmission zeros, where the time-dependent weights cause the open loop
predictions to coincide with closed loop predictions, which results in a reduction
of output constraint violations.

1. Introduction

Most advanced controllers implemented in the process industries today are Model
Predictive Control (MPC) algorithms (Garcia er al., 1989; Rawlings, 1999), and
such controllers are becoming increasingly popular in other industries (e.g., see
Featherstone er al, 2000; VanAntwerp & Braatz, 2000a,b; and references cited
therein). MPC, also known as receding horizon control, uses a process model to
predict the future, and then computes the future control trajectory that optimizes a
performance objective based on the model predictions. The value for the control
move at the current sampling instance is implemented. At the next sampling instance,
new measurements are collected and the control calculation is repeated. These steps
update the control move calculations to take into account the latest measurement
information.

One reason for the popularity of model predictive control is its ability to directly
include constraints in the computation of the control moves. This results in a linear
program (LP) or quadratic program (QP) to be solved at each sampling instanc,
with the constraints written directly as constraints in the LP/QP. The introduction of
actuator constraints usually poses no significant problems, whereas state and output
constraints are more of an issue. Zafiriou showed that explicitly including these
constraints in the LP/QP can destabilize otherwise stable closed loop systems con-
trolled by a model predictive controller, as well as lead to some surprises during
controller tuning (Zafiriou & Marchal, 1991). Perhaps a more critical issue is with
regard to potential infeasibilities in the LP/QP. That is, a combination of actuator,
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state, and output constraints can easily result in LP/QPs in which there is no
feasible solution, so the control algorithm cannot compute any control move to be
implemented at that sampling instance. Such behavior cannot be tolerated, so it has
become common to use a soft constraint formulation to handle state and output
constraints, in which penalty terms on the constraints are included in the objective
function (de Oliveira & Biegler, 1994; Ricker et al., 1989; Vuthandam et al., 1994;
Zheng & Morari, 1995). A soft constraint formulation avoids infeasibility problems
by allowing violations in the state and output constraints, but attempts to minimize
the violations by placing large enough penalties on constraint violations in the
objective function.

It is desirable to select the penalty terms to both avoid extreme violations in the
state and output constraints, and to minimize the length of time for which the
violations occur. These two objectives are competing for processes with nonminimum
phase zeros, with different norms for the penalty terms having different levels of
effectiveness in jointly addressing these objectives (Scokaert & Rawlings, 1999). Also,
it is desirable for the MPC algorithm to be formulated so that the control weights
are tunable in an intuitive manner, since this is critically important for a control
algorithm to be effective in practice.

The different norms that have been proposed for quantifying the constraint
violations in the penalty functions include:

o The I,-norm, which is the sum over all time steps in the prediction horizon of
the absolute value of the predicted constraint violations.

e The /,-norm, which is obtained by squaring the predicted constraint violations,
and then summing over all time steps in the prediction horizon.

e The I -norm, which is the absolute value of the largest predicted constraint
violation within the prediction horizon.

The I,-norm has been a popular choice among control theorists (de Oliveira &
Biegler, 1994; Zheng & Morari, 1995; Allwright & Papavasiliou, 1992; Campo &
Morari, 1986; Dave et al., 1999). One reason for its popularity may be that the
I.-norm only increases the number of free variables in the optimization by the
number of soft constraints, whereas the /;- and /,-norms increase the number of free
variables by the number of soft constraints multiplied by the number of time steps
in the prediction horizon. Also, for some control problems it is appealing from an
engineering point of view to minimize the worst-case constraint violation.

In a recent paper, Scokaert & Rawlings (1999) showed that unexpected closed
loop behavior could occur, depending on which norm was used in the penalty terms
on the constraint violations. One of the key results was that the /,-norm can result
in very poor closed loop performance for processes with nonminimum phase zeros.
Such plants are very common in practice, especially for multivariable processes, which
can be nonminimum phase even if each element in the transfer function is minimum
phase (Morari & Zafiriou, 1989). Scokaert & Rawlings (1999) reported the following
two problems with the /,-norm measure of constraint violations:

1. non-intuitive effects of changing the tuning parameters in the penalty function
which define how the constraint violations increase the objective function in
the optimization, and

2. actual closed loop performance was significantly poorer than the predicted
open loop performance.
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A very convincing argument was given that these two problems are closely related,
that is, it is the fact that the actual closed loop performance in the future can be very
different from the predicted performance at a particular time instance that results in
non-intuitive tuning.

These problems did not appear when the /,- and /,-norms were used. Scokaert
and Rawlings therefore recommended the use of the /;- or /,-norms as measures of
the magnitude of constraint violations, even though the use of these norms results in
a larger number of degrees of freedom in the optimization problems, and the norms
may be considered to be less appealing for some control problems.

In a recent paper (Hovd & Braatz, 2001), we showed that the /_-norm can be
used, provided that the MPC algorithm be formulated to include a suitably-tuned
time-varying weight on the constraint violations to be penalized in the objective
function. From the point of view of the MPC algorithm at a given sampling instance,
the weight varies only with respect to the prediction horizon. A simple tuning rule
specifies how the time-dependence is selected. The results were illustrated on a single-
input single-output (SISO) system with three states, two nonminimum phase zeros,
and two highly oscillatory poles.

While inverse response is common in SISO systems, nonminimum phase transmis-
sion zeros are probably more prevalent in multivariable systems. This paper extends
the approach to multivarible systems, and illustrates the approach by application to
two systems. By the appropriate selection of time-varying weights, the predicted open
loop responses are consistent with the actual closed loop responses, which results in
improved handling of the output constraints.

2. MPC Formulation
The linear discrete-time state space model is
Xi+1 =Axk + Bu,‘
(1)
Ye=Cx,

which is assumed to be minimal. At timestep k, the model predictive controller solves
the optimization

N—1

min z Xi+i 0%+ uly; Rug)) +x{+Nsxk+N +f(¢) 2)

Ue i=¢

subject to
U S Uy SUy
Cxivi— Wity <yy
Cxit Weer 2y, 3
g =20
g =0

where U= [t4, 1 1,...,4.,n—4]" is the vector of control moves computed over the
control horizon N. The matrix R is positive definite, whereas Q is positive semidefinite.
The ‘cost to go’, S, is a positive defintite matrix. In this work, it is given by the
solution to the discrete-time Lyapunov equation

S=(A+ BK)"S(A + BK)+ Q @)
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where K is the infinite horizon LQ-optimal controller for the weights Q and R. The
constraints are enforced over an extended horizon of length N+ j,. A sufficiently
large value for j, ensures that the constraints will be feasible on an infinite horizon
if they are feasible up to the horizon N + j,, see Rawlings & Muske (1993) for details.
Note that it is necessary to ensure that the manipulated variable constraints are also
feasible up to N+ j,; since it is assumed that state feedback using K is in effect from
N until N 4 j, this effectively becomes an additional set of state constraints over that
period. The function f(¢) is the penalty function that increases the optimization
criterion when the soft constraints are violated, and

2
£r

is the vector of weighted /_-norms of the constraint violations in the upper and lower
soft constraints (for brevity only output constraints are listed here; the generalization
to state constraints is straightforward). The penalty function f{(&) is given by

f(e)=e"Pe+p'e (6)
The matrix P is assumed to be positive definite, in order to be able to solve the
optimization problem as a standard QP program. The vector p has non-negative
elements, and sufficiently large elements in p will ensure that the constraints are
enforced as exact soft constraints, that is, that constraint violations will only occur
when there is no feasible solution with hard constraints (see an optimization book
for a discussion on exact penalty functions, e.g. Peressini ef al.(1988), or de Oliveira
& Biegler (1994) for a discussion within the context of MPC).
Instead of including in the objective function the time dependence of the weights
for the soft constraints, the non-negative matrices W in the constraint equations
contain the inverse of that time dependence:

1
Wil

= (rj)i (7)

with r;>1. When evaluating the constraint violation vector for constraint j at
different time steps i in equation (3), we find that when a constant magnitude is
predicted for the actual constraint violation the required magnitude of g; has to
increase by a factor of r; for every time step in order to fulfill the constraints. Thus,
predicted constraint violations in the far future are given more weight than violations
in the near future. We know that for plants with inverse response, a larger constraint
violation is required initially to drive the output back into the feasible region. This
is achieved by selecting r;> 1, but would not be optimal according to equation (2) if
constraint violations are given the same weight throughout the prediction horizon.
Furthermore, this is achieved while using only a single constraint violation variable
for each actual constraint over the whole prediction horizon.

The magnitude of r; is set based on the location of the nonminimum phase zcros
in the plant. Tt was recommended that the value of each r; should be greater than
the magnitude of the absolute value of the nonminimum phase zero farthest from
the origin while significantly affecting the process dynamics (Hovd & Braatz, 2001).
In extensive simulations, this lower bound on the r; resulted in an MPC algorithm
that did not have either of the two problems observed by Scokaert & Rawlings. That
is, the effects of changing the tuning parameters in the penalty function became
intuitive, and the actual closed loop performance was close to the open loop predicted
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performance. The lower bounds were also given a physical explanation in terms of
the nonminimum phase influence on the process dynamics.

In this paper, we show that the same tuning criterion applies to multivariable
systems with nonminimum phase transmission zeros. The approach is first illustrated
using a stable process with one nonminimum phase zero. Then a multivariable process
with much more complex nonminimum phase behavior is investigated.

3. Example 1
Consider a process with the 2 x 2 continuous transfer function
1 -1
(Gs+1)(10s+1) (Ss+1)(10s+1)
— 8
) —2s+1 ds—2 @)

Gs+ D(10s+1) (Gs+ 1)(10s+ 1)

This process has a nonminimum phase transmission zero pinned to the second
output. Such pinned zeros are quite common in practice (Skogestad & Postlethwaite,
1996), for example, such a zero would occur if the sensor for the second output
demonstrated inverse response.

This process was sampled using zeroth order hold and a sampling interval of
0.5 min. This process was sampled with a sampling interval of 0.5 min. The resulting
discrete-time plant has transmission zeros at 1.2869 and —0.9512, two poles at
0.9048, and two poles at 0.9512. The open loop step responses are shown in Figure 1.
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Figure 1. Open loop unit step responses for Example 1.
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The inputs and outputs are constrained between +1. The controller tuning
parameters are Q= CTC, R=1,, N=20, P=0.01 and p =100. The relatively large
number for p was selected to encourage the MPC algorithm to satisfy the output
constraints as quickly as possible. Throughout this example, the excess constraint
horizon j, = 70 is used. This value for j, was checked in the simulations and found
to be sufficiently large to guarantee feasibility of the constraints on the infinite
horizon according to the criterion of Rawlings & Muske (1993).

The initial condition is taken to be

©)
—1

so that the output constraint is violated at ¢ =0.

For the case of time-invariant weights (r; = 1), both closed loop output responses
are very sluggish, with the output constraints being violated for the first 50 samples
(see Figure 2). The second achieved plant output is significantly more sluggish than
what is predicted at =0, and the plant inputs computed at ¢ =0 are very different
from the plant inputs that occur when the control is implemented in a receding
horizon manner (see Figure 3). This difference in the predicted and achieved plant
inputs results in the poor closed loop performance seen in Figure 2.
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Figure 2. Plant output with r;=1 for Example 1.




Handling State and Output Constraints in MPC Using Time-dependent Weights 73

— u, {actual)
1t —— u, {predicted) ||
- - U, (aclual)
o8} . U, (predicted) | |
08| -. -
04
02f 4
2 J
a of i
£ '
-0.2 .
0.4 -
06 B
w8 e—-- R T
b P J
1 1 I 1 I 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Figure 3. Plant input with r;= 1 for Example 1.

Following the design specification, the rise parameters r; should be greater
than or equal to the magnitude of the nonminimum phase transmission zero. For
r;=1.2869, the predicted and achieved plant inputs are nearly equal for the entire
control horizon of 20 (see Figure 4), and the predicted and achieved plant outputs
are nearly equal (see Figure 5). The closeness between predictions and what is
achieved by the receding horizon control algorithm leads to much better output
constraint-handling capability, with both cutput constraints satisfied within 30 min.

The plant inputs and outputs for r;=2.5 are shown in Figures 6 and 7. The
differences between the predicted and achieved plant inputs and outputs are negligible.
The output constraints are satisfied for the second output somewhat sooner than for
r;=1.2869.

For this example the nonminimum phase transmission zero is pinned to the
second output (see equation (8)), so only the rise parameter for the second output
(r,) needs to be selected greater than the magnitude of the zero (r, can be set to 1 so
that the weight on the first output is time-invariant). The plant outputs and inputs
for r;=1 and r,=1.2869 are nearly indistinguishable to the case where
ry =r, = 1.2869 (see Figures 8 and 9). Similarly, the closed loop responses for r; =1
and r, =2.5 are nearly indistinguishable from the responses for r, =r,=2.5. In
contrast, setting the rise parameter for the first output equal to the nonminimum
phase zero, and the rise parameter for the second output to one, gives poor
performance (see Figures 10 and 11).

Based on these observations, the tuning rule can be modified for zeros pinned to
particular outputs. In this case, the rise parameters can be set to one for the outputs
unaffected by the pinned zeros. On the other hand, it appears that there may be little
change in closed loop performance by selecting all of the rise parameters greater
than one.
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Figure 4, Plant input with r; = 1.2869 for Example 1.
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Figure 5. Plant output with r; = 1.2869 for Example 1.
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Figure 6. Plant output with r;=2.5 for Example 1.
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Figure 7. Plant input with r;= 2.5 for Example 1.
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Figure 8. Plant output with r, =1 and r, = 1.2869 for Example 1.
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Figure 9. Plant input with r, =1 and r, = 1.2869 for Example 1.
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Figure 10. Plant output with r, = 1.2869 and r, = 1 for Example 1.
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Figure 11.  Plant input with r; = 1.2869 and r, = | for Example 1.
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4. Example 2
Consider a process with the 2 x 2 continuous transfer function
1L.2(—s+5) - —=25+5
s+ D(5s+1 (4s+ 1D)(5s+ 1)
P(s) = ¢ ) ( (10)
(—25+5)(—s+5) ~25+5

2s+ DBs+ DGs+1)  (s+1)(6s+1)

This process was sampled with a sampling interval of 0.25 min. The multivariable
poles and zeros for the discrete-time plant are shown in Figure 12. The nonminimum
phase transmission zeros are 1.0808, 1.9307, and 4.7261. The open loop step responses
are in Figure 13.

The inputs and outputs are constrained between +1. The controller tuning
parameters are Q= CTC, R=1I,, N=20, P=0.01 and p=100. Throughout this
example, the excess constraint horizon j, = 110 is used. This value for j, was checked
in the simulations and found to be sufficiently large according to the criterion of
Rawlings & Muske (1993). The initial condition is

Xog =

o o o o O

0
2.6350
| —1.6484_

so that the output constraint is violated at ¢ = 0.

Pole-Zero Map
0.05 . o)
w
<
é, Of----- & - -0 (9
_0.05 L= Q, . . ) .
0 1 2 3 4 5 6
Real Axis

Figure 12. Multivariable plots and zeros for Example 2.
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Figure 13.  Open loop unit step responses for Example 2.

For the case of time-invariant weights (r;= 1), the second output requires 50%
more time to satisfy the output constraint than for its predicted value (see Figure
14). Trying to reduce the time of constraint violation by reducing the magnitude on
the control weight resulted in an ill-conditioned Hessian in the quadratic program.
The plant inputs computed at 1 =0 are very different from the plant inputs that
actually occur when the control is implemented in a receding horizon manner (see
Figure 15). This difference in the predicted and achieved plant inputs leads to the
poor closed loop performance seen in Figure 14.

Following the design specification, the rise parameters r; should be greater than
or equal to the magnitude of the nonminimum phase transmission zero. For rj=3,
the predicted and achieved plant inputs are equal for the first 8 sampling instances
and qualitatively similar for the first 13 sampling instances (see Figure 16), and the
predicted and achieved plant outputs are nearly equal for the first 16 sampling
instances (see Figure 17). The closeness between predictions and what is achieved by
the receding horizon control algorithm leads to much better output constraint-
handling capability, with both output constraints satisfied within 10 sampling
instances.

The plant inputs and outputs for r;=2 are shown in Figures 18 and 19. The
responses are similar to those for r;= 5. This would seem to violate the tuning rule
that r; should be greater than the magnitude of the largest nonminimum phase
transmission zero. However, the transmission zero at 4.7261 is too large in magnitude
to have much of an effect on the dynamics. Thus r; can be selected to be larger than
the magnitude of the largest nonminimum phase transmission zero that significantly
affects the dynamics, which is at 1.9307.
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Figure 17.  Plant output with r; =5 for Example 2.
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Figure 18. Plant input with r;= 2 for Example 2.
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Figure 19. Plant output with r;= 2 for Example 2.
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5. Conclusions

The introduction of time-varying output penalty weights into the /,-norm MPC
formulation removes the drawbacks identified by Scokaert & Rawlings (1999). Two
multivariable examples illustrated the effectiveness of the approach. The original
tuning rule (Hovd & Braatz, 2001) was modified so to ignore nonminimum phase
transmission zeros that are too large to significantly affect the process dynamics.

The tuning can also be modified to take into account the direction of the
nonminimum phase transmission zeros. In particular, time-varying weights are not
needed for plant outputs that are not significantly affected by the nonminimum phase
transmission zeros (for example, as occurs with output pinned zeros). On the other
hand, there may not be a significant difference in closed loop performance by selecting
all of the rise parameters greater than one.
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