“A Nonlinear Observer for Integration of GPS and Inertial Navigation Systems”

Authors: Bjørnar Vik and Thor I. Fossen,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 2000, Vol 21, No 4, pp. 192-208.

Keywords: Nonlinear observer, GPS, INS

Abstract: GPS and INS have complementary properties and they are therefore well suited for integration. The integrated solution offers better long term accuracy than a stand-alone INS, and better integrity, availability and continuity than a stand-alone GPS receiver, making it suitable for demanding applications. The integrated filter is nonlinear both in state and measurements, and the extended Kalman-filter has been used with good results, but it has not been proven globally stable, and it is also computationally intensive, especially within a direct integration architecture. In this work a nonlinear observer suitable for direct integration is presented. Global exponent ial stability of the origin of the combined attitude and velocity error systems is proven along with robust stability in the presence of noise and unmodelled dynamics.

PDF PDF (2187 Kb)        DOI: 10.4173/mic.2000.4.1

DOI forward links to this article:
[1] H. Chou, M. Traonmilin, E. Ollivier and M. Parent (2004), doi:10.1109/ICNSC.2004.1297064
[2] H. Chou, M. Traonmilin, E. Ollivier and M. Parent (2004), doi:10.1109/IVS.2004.1336457
[3] A. Kim and M.F. Golnaraghi (2004), doi:10.1109/PLANS.2004.1308980
[4] Yunlong Wang, Mohsen Soltani and Dil Muhammad Akbar Hussain (2016), doi:10.1109/SICEISCS.2016.7470176
[5] Yunlong Wang, Mohsen Soltani and Dil Muhammad Akbar Hussain (2016), doi:10.1109/OCEANSAP.2016.7485526
[6] Yunlong Wang, Mohsen Soltani and Akbar Hussain (2016), doi:10.1109/ACC.2016.7526533
[7] Yunlong Wang, Mohsen Soltani and Dil Muhammad Akbar Hussain (2017), doi:10.1109/TIE.2016.2633529
[8] Jan Wendel and Gert F. Trommer (2004), doi:10.1016/j.ast.2004.07.003
[9] Yang Qu and Lilong Cai (2022), doi:10.1016/j.isatra.2022.10.041
[10] Min-Kyu Kim, Jong-Hwa Kim and Hyun Yang (2023), doi:10.3390/jmse11050970
References:
[1] Britting, K. R. (1971). Inertial Navigation Systems Analysis, Wiley Interscience. Greenspan, R. L., Donna, J. I. and Soltz, J. A..1988, The GPS Users Integration Guide, in ´Proceedings of National Technical Meeting ION´, pp. 104-112.
[2] Hofmann-Wellenhof, B.. Lichtenegger, H. Collins, J. (1994). Global Positioning System: Theory and Practice, Springer Verlag, Wien New York.
[3] Lakshmikantham, V., Matrosov, V. M. Si Sivasundaram, S. (1991). Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer Academic Publishers.
[4] Maybeck, P. S. (1979). Stochastic Models, Estimation and Control, Vol. 1. Academic Press, New York.
[5] Phillips, R. E. Schmidt, G. T. (1996). GPS/INS Integration, AGARD Lecture Series 207: System Implications and Innovative Applications of Satellite Navigation pp. 9.1-9.18.
[6] Vik. B. (2000). Nonlinear Design and Analysis of Integrated GPS and Inertial Navigation Systems, PhD thesis, Norwegian University of Science and Technology.
[7] Vik, B., Shiriaev, A. Fossen, T. I. (1999). Nonlinear Observer Design for Integration of DGPS and INS, In H. Nijmeijer az T. I. Fossen, eds, ´New Directions in Nonlinear Observer Design´, Springer-Verlag Ltd, London, p. 135.


BibTeX:
@article{MIC-2000-4-1,
  title={{A Nonlinear Observer for Integration of GPS and Inertial Navigation Systems}},
  author={Vik, Bjørnar and Fossen, Thor I.},
  journal={Modeling, Identification and Control},
  volume={21},
  number={4},
  pages={192--208},
  year={2000},
  doi={10.4173/mic.2000.4.1},
  publisher={Norwegian Society of Automatic Control}
};