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GPS and INS have complementary properties and they are therefore well suited
for integration. The integrated solution offers better long term accuracy than a
stand-alone INS, and better integrity, availability and continuity than a stand-
alone GPS receiver, making it suitable for demanding applications. The integrated
filter is nonlinear both in state and measurements, and the extended Kalman-filter
has been used with good results. But the extended Kalman-filter has not been
proven globally stable, and it is also computationally intensive, especially within a
direct integration architecture. In this work exponential stability of the origin of
the combined attitude and velocity error systems is proven along with robust
stability in the presence of noise and unmodelled dynamics.

1. Introduction

‘The complementary features of Inertial Navigation Systems (INS) and the Global
Positioning System (GPS) are the main reasons why integrated GPS/INS systems are
becoming increasingly popular. The high long term accuracy of GPS can be combined
with the high output rate, dynamic capability, robustness, and reliability of INS. In
the case of GPS drop-outs, the INS will be calibrated when coasting through the
outage. After the outage, the INS can provide estimates of position and velocity to
the GPS receiver to speed up reaquisition. GPS/INS systems thercfore offer position,
velocity, acceleration, attitude and angular velocity measurements with high accuracy,
output rate, and reliability in one package.

Several levels of integration have been mentioned in the literature (sce e.g. Phillips
and Schmidt (1996), and Greenspan ez al. (1988)), among them uncoupled, loose, tight,
and deep integration. With increasingly tight coupling, performance and robustness
against interference will increase at the cost of increased complexity, possible reduction
of redundancy, and somewhat reduced flexibility. An example of a loosely coupled
architecture is shown in Figure 1, and an example of a tightly coupled architecture is
shown in Figure 2.

The main difference between the architectures is that in tightly coupled systems
raw accelerometer, gyro, pseudorange, and deltarange measurements from the sensors
are used instead of position, velocity and attitude data. One main advantage of tight
integration is that even in the case where less than the necessary amount of satellites
are available for a navigation solution, the remaining pseudoranges and deltaranges
provide information that will help the INS coast through the outage. Another key
feature, at least for military applications, is velocity aiding of the GPS receiver corre-
lator loops. The aiding enables the receiver to keep the bandwidths of the tracking
loops low even under highly dynamic conditions, thereby increasing jamming resis-
tance. Tightly coupled systems have also been reported to be more accurate than the
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Figure 1. Loosely coupled GPS/INS system.
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Figurc 2. Tightly coupled GPS/INS system.

loosely coupled systems. These advantages comes at the cost of increased complexity
and increased demand for computer throughput in the navigation computer due to
the fact that both GPS and strapdown software must be implemented in the navigation
computer. However, the last few years there has been a trend towards more tightly
integrated systems.

In addition to the different levels of integration, there are two different ways
of modelling position.velocity and attitude variables, known as direct and indirect
integration (Maybeck, 1979). The most popular approach is indirect integration where
errors are estimated in the integration filter and used to update the whole state
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variables, like position and velocity, that are output from the strapdown computations.
The filter can be designed with a slow update rate due to the slow dynamics of the
error model. This approach naturally belongs together with an uncoupled or loosely
coupled architecture. The direct approach involves estimating the whole states in the
filter. It has been argued that this requires more computer throughput since the
dynamics of the whole states is much larger than the dynamics of the error states and
subsequently require higher iteration rate. However, in a tightly coupled architecture,
the strapdown equations must be performed in the same computer anyway. This
argument is therefore only valid if a Kalman filter, where the state covariance matrix
must be updated at a high iteration rate, is used.

In this paper, a nonlinear observer that does not require high iteration computa-
tions, is presented. Direct integration using this observer is not second to indirect
integration when it comes to computer throughput requirements. In fact, since the
observer does not include position, velocity and attitude error models, there are fewer
computations in comparison to an indirect architecture. The observer, being a direct
filter, is intended for systems where IMU data (acceleration and angular velocity) are
used directly in the filter. For other systems, the standard error model approach will
be more suitable. In Vik er al. (1999), the observer was analyzed using a cascaded
approach, and quasi-equi asymptotic stability (QEAS) of the error system Origin was
proven (see Lakshmikantham et al. (1991) for a definition of QEAS). In this paper,
we prove global exponential stability (GES) of the origin. This is a stronger result
than QEAS.

Notation

When dealing with several coordinate frames, it is necessary to know which frame
the vectors are decomposed into. We will refer to the different coordinate systems
using the indexes of Table 1.

Vectors are written with a superscript showing which frame the vector is decom-
posed into. For example:

V' =[vy, Vg, vp]": Platform velocity decomposed into the NED frame

The relative angular velocity between two frames is described using angular velocity
vectors. These vectors will, in addition to superscripts, have subscripts showing which
two frames that are rotating relative to each other. For example:

o}, € R*: Angular velocity of ECI relative to ECEF decomposed into the NED frame

Addition of two angular velocity vectors are reflected in the notation by cancelling
the inner subscript as follows:

(‘IJ:-'" = w?{‘ + U):ﬂ

Table 1. Coordinate system indexes

Index Coordinate.systcm Components
i Earth Centered Inertial (ECI) - Xis y,-,z,-_
€ Earth Centered Earth Fixed (ECEF) X VesZo

n North, East, Down (NED) N,E,D

b

BODY Xps Vi Z
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Table 2. Overview over vectors used in this paper

Frame Vectors Comments

ECEF =[x, Ver 2. ) ER Cartesian ECEF position
NED V' = [V, g, Up] ER® North, east and down velocity
NED/ECEF o, = [y, 0p, wp] € R Function of vehicle velocity
BODY/NED oty=[p,q,7] eR? Roll, pitch and yaw rate
ECEF/ECI o, = [0,0,w,] eR? w, is angular velocity of Earth

The order of the subscript is reversed when the direction of the rotation is
changed, i.e.

Rotation of a vector is written:
g
v' = R}y

where the BODY-fixed velocity v* is decomposed into the NED frame by multiplication
with the rotation matrix Rj.

Cross products will be written in matrix form using the skew-symmetrical matrix
operator:

S{w) =[wx]

The most common translatory and rotational vectors that will be used below is
summarized in Table 2.

2. Strapdown Equations

Position, velocity and attitude variables from an INS are derived from measure-
ments of acceleration nominally made along the three orthogonal axes in the BODY
frame, and from angular velocity (gyroscope) measurements of rotation of the inertial
frame relative to the BODY frame. For applications on the Earth, the inertial frame
can be well approximated by the ECI frame. The GPS measurements are given in the
ECEF frame, while the IMU measurements are given in the body frame. The best
choice of reference frame for intcgration is dependent from the application and the
priorities of the system integrator. In this paper the observer velocities will be given
in the NED frame, while positions are given in the ECEF frame. Longitude and
latitude can easily be calculated from ECEF positions using well known algorithms,
see e.g. Hofmann-Wellenhof er al. (1994).

Attitude equations

The attitude will be represented using the singularity free unit quaternion qeH,
where

H={qq"q=1,9=[1,£"]",yeR,ze R*} (1

The differential equations describing rotation of the BODY frame relative to the

NED frame 1s:
] 3 1 -7
q=| |=3 [0 (2)
2 nl+S(e)
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Error free gyros measure the rotation of the BODY frame relative to the ECI frame
decomposed into the BODY frame, i.e. wf. Thus, w?, can be found from:

b b b b b b
Wyp = Op — Wy, = W3y, — (05, + @), (3)

Applying (2) and (3) gives the unit quaterion differential equations:

m=1[ - Jw&——‘ [ —t ](w:-; +ely) (@)
K: 2| yI +S() 2| g1 —S()

- ;—Tq(q)wf-; - ; =(q) (0, + o)) )

where matrices T,(q) and Z(q) has been introduced for easy reading. !, and o", can
be calculated from (12) and (11), respectively.

Position and velocity equations

The NED frame is the most popular mechanization for navigation systems for
applications on and close to the surface of Earth. The differential equations for NED
frame velocity can be found in e.g. Britting (1971):

¥ = RIf? + g" — [2S(a,) + S(esl) V"
where
=R} (g"— S*(wL)x")

is the specific force measurements made by the accelerometers. " is gravity due to the
mass of the Earth, while

A

is referred to as plumb bob gravity since a plumb bob at rest would be directed along
the accelerometer sensed line of force. The sum of the mass attrction gravity term plus
the centripetal term resulting from Earth rotation will therefore be directed along the
down axis, i.e.

g"'=[0 0 gp)" (6)

where g, can be assumed known with sufficient accuracy (below the noise floor of the
accelerometers) for most systems. In some high accuracy applications, errors in gravity
magnitude as well as direction are estimated. For calculation of position, several
representations can be used. Often, the system is divided into horizontal (latitude and
longitude) and vertical (height) channels. The differential equations are:

h=cv=—v, (7

R;= —S(f,)R: ®)
where

c=[00 —1]"

Latitude and longitude can be calculated from the rotation matrix R¢. Position
can also be expressed in ECEF Cartesian coordinates:

i = RV" ©)
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Formula (9) is useful for integration with GPS, where position measurements are
given as Cartesian ECEF coordinates. Latitude, longitude, and height can then be
calculated from re. In this paper, the latter representation will be used. The total
position/velocity system can now be written:

Vv =Rif* +¢" — [2S(ek) + @)V (10a)

i€ = Rey" (10b)

For implementation of (10a) and (10b), ©f, can be calculated directly from the NED
velocities using the following equations:

- | _
— Vi
Wy 1
(U:,, =| Wg |= — l Y oy Uv" (l l)
Vu
e 1
——vgtanu
L. _
where
0 ! 0
h
1
U= —_—— 0 0
Tu
1
0 —tany 0

— 1 —

r, and r, are the north and east radii of curvature of the local horizontal.
The angular velocity wf, can be calculated from:

o, =Rio}, (12)

where wf, = [0, 0, w,]7 is known.

Note that by inserting (11) into (10a), a quadratic nonlinearity in v" is introduced.
Also, R¢ is a nonlinear function of r¢. The effects of these nonlinearities are small
compared to the nonlinearities associated with R}. In fact, the skew-symmetrical terms
in (10a) are only important during long GPS outages, in which case the nonlinear
stability analyses presented below are invalid. The skew symmetrical terms and R; can
thus be assumed constant and known in the stability analyses.

It should be mentioned that for applications with longer than a few minutes
operational time, some kind of external height measurement is required to stabilize
the vertical channel. For marine applications a height constraint can be applied, e.g.
zero sea level. Otherwise, a barometric altimeter is typically applied. GPS measure-
ments can also be applied, but it will still be of interest to have some other measurement
available in the case of long duration GPS dropouts.

IMU error models

The most dominating errors are usually biases, scale-factor errors and misalign-
ment errors. The biases and scale-factor errors are usually precompensated through
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calibration and thermometer feedback, and the misalignment errors (which include
non-orthogonality of the sensor axes) are made as small as possible during mounting
of the IMU. However, there are still residual errors that need to be estimated. The
output of the IMU can be modelled as:

Wiy = [] - A(K, 1)](”3: - bl — W, (13)
filuu = [I - A(L! ﬁ)]fh - bl — W5 (14)
where
sx ¢’I)‘ ¢)xz
A= A(S’ ¢) = qbyx S_v (ub}'z
(:bzx d)zy sz

Here s =[s,, s,,5.]" are three scale factor errors and

¢ = [‘!b_x}" d)IZS éyx! gﬁ-},: ? (bz.r' (abzyJT

are six small misalignment angles. b, € R* and b, € R represent gyro and accelerometer
biases, respectively. w, € R* and ws € R? are bounded unmodeled errors and measure-
ment noise. Since the errors are small, the following approximation can be made:

(uf':ﬁ = [I - A(K! a)] - l(wixnu + hl + wl)
= [I + A(K) ﬂ!)] ((uimu + b1 + w, )

~ I + Ak, a)] @iy + by + W,

where higher order terms are removed. This approximation is made in order to make
the nonlinear analysis easier. Thus, the IMU errors will be modelled as:

by = [1+ Ak, @)] 0, + by + W, (15)

£ =1+ A, B)] fimo + by + W5 (16)

Notice that all error signals are decomposed in the body frame. The magnitude of
these errors are in general directly proportional to the price of the IMU. The gyro
error models are assumed to be described by the Ist-order models:

b= —T;'b;+w,
K= —T; 'k+w, (17
o= —T; 'a+w,

driven by Gaussian white noise signals w,,w,eR> and w,eR®. The matrices
T,,T,eR*** and T, € R®*© are diagonal matrices of time constants, x = [k, o
are three gyro scale factor errors, and a = [a,,, o, By Oy y Oy, 0, ]7 @re six small gyro
misalignment angles. The accelerometer errors are described accordingly:

bzz _'T4__ lb2+w{,
é=—Ts 'e+w, (18)

B: —T¢'B+wg
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3. GPSI/INS Attitude and Velocity Observer
By combining (5), (15) and (17), the error free system can be written:

[’T] = 2T (@) [+ A, )i + by +w,] 5@ (@ +aty)

hl — _Tl_ 1b1 +“’2

(19a)
K - - Tz_ IK + W3
o= —T;'a+w,
The following attitude observer is proposed (Vik 2000):
A ] ~ T3 ry N ~ o~ 1 —_— "
q= qu(QJR [(X+ Ao, + by + K, Esgn (7)] —3= (@i,
b,= —T[ 'b, —I—:;-Kzﬁsgn(ﬁ)
(20)

R=—T;'k+ ;]) K, diag (£);m, sg (7)

d=—T;'d+ ;-KJ(E)wim sgn (7)

where
0 0 £, 0 £, 0T
& =|\|#& 0 0 0 0 &
0 £ 0 £ 0 0

and K;eR**3 (i=1,2,3) and K,€R%*® are gain matrices. The quaternion error
[#, €7]" is obtained by combining the quaternion estimate with a reference measurement
from a GPS attitude array, or other available attitude measurements. Usually, accurate
roll and pitch references can be obtained from the accelerometers in inclinometer
mode aided by GPS position or velocity. A high accuracy INS can also supply an
accurate heading reference from gyrocompassing. GPS attitude data can be combined
with the quaternion estimate either by supplying quaternions (loosely coupled), or
differential phase data (tighly coupled). The error free position/velocity system is
found by cbmbining (10a), (10b), (16) and (18):

V" =Ry[(I + A )iy + by + ws] + 8" — [2S(wf.) + S(we) V"

=RV
b,=—T; 'b, +w,
t=—Ts'e+wy (21)

p= T Bt ws
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f=Lrim
t=f+wy
The proposed position/velocity observer is (Vik 2000):
V' =RE[ + A, + bo] + 8" — [2S(00f,) + S(el,)" + K5 + (RE) i
i° =RV + K
b, = — T ', + K, (R)Tv
é= —T3; "¢+ Kgdiag(f,,,) (R} 22)

B=—Ts'f+KoXT(K,,) R
j": i Ilfﬁ.‘l‘kmf"‘f

t=f+k,t
where
f, f. 0 0 0 o7r
Yf.)=|0 0 £ £ 0 0
o o0 o0 0 f f

K,eR**? (i=[5,...,8)]), and Ko€ R®*® are positive definite gain matrices, and k,
and k,, are positive scalar gains. ¥, ¥", £, and f are obtained by combining reference
data from GPS with the respective estimates. In a tightly coupled system, GPS would
supply pseudoranges and deltaranges, while position, velocity and clock data would
be supplied in a loosely coupled system. Both of the above observers have been
designed by means of a Lyapunov stability analysis.

3.1. Stability analysis
The nonlinear error model for the attitude observer is found from (19a) and (20):

il 1 —& |.- _
=5 A1 imu bl_l(lT 7}
H E[ﬁHS(E)J[ G i s

b= — T/ b~ Kyésen (i)
@3)

=
Il

T3 'R Ky diag (o, sgn ()

10
I

— T 2= K T @i s20 ()
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By combining (21) and (22), the error dynamics for the velocity observer takes

the form:
V' =Rp[A,fim, + by] + (R} — R — [2S(w],) + S(wl,)IV" — Ks¥" — (RS F

i= —T; '&—Kgdiag(f,,.) (RE)"V"
To ' B—KoY(f,n,) (R
f=+ t7 'f—kiof—1

{::_:f_knf

g~ 10
Il
b

24)

where f= (I + A,)f;,,, + b, is the true specific force at the navigation platform. In the

following theorem we will assume that the true acceleration is bounded, i.e.

1 < frnax

Using the relation:
R} =153 +277S(e) + 2S7(2)

the expression (R} — R?)f is written:
(R — R)f = Ry(R; — Df

= RI[27S(8) + 2S4@)]f
= 2RI[71 + S(E)ISEf

= —2R;[71 + S(@)S(F)
= —F(@q,q.0)2

where
F(@§, @, ) = 2R} [71 + S(&)IS(F)

Theorem 1 If the condition (30) is satisfied, the total error system (23) and (24) is GES.

Consider the following Lyapunov Function Candidate for (23):
@—1*+&%¢ if §=0
@A+ D>+ if 70

V,=blK, 'b, + R'K; 'k +&'K; ‘&

The derivative along the trajectory of (23) is:

—24 if
2)? if

=
Y
o

V,=2bTK; 'b, + 287K ' & + 257K [ 14 + {

= —2b[T; 'K; 'b, —28"T; 'K; '#—2a"T; 'K; 'a— &K, &

<0

(25)

(26)
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where it is used that:

i+ E¢=0 27
&'A 0, = KT diag(8)w;,, + @' T(@)oy,, (28)
Let V, be defined as:
v, =L @y a L ey + ll‘;}‘}(; 1h, + LeTK e+ Yeks1py l-j’ 1z
2 2 2 2 2 2 2

The derivative of V', along (24) is:
Vy = ")V + (F)"E + BIK 7 ', + 87Ky Lé+ fTK, f 4+ ff + v
= (™) IR} (A i + B2) — (2S(w},) + S(@ )V — Ks¥" — F(§, §, 1)E]
— (V) (R7)T° + (F) [R5¥" — K¢
~ b3 [K7 T3 by + R}V — &"F;,,, (RY) V"
— B (€) RV ="Ky ' T3 '6— B'K ' T4 ' B (29)
—(t7 Y ko) — T~k TR A
= —(V)'Ks¥" — (") 'F(§,§.1)e — () K¢t — DI K, ' T, b,
— &Ky 'Ts "6 — B Ky 'Tg 'B—(t5 "+ kyo)f? —ky, T2
= —a(x)0Vx #0
where Y have been designed such that
Asfiy — Y(Eimu ) — diag (£, )E=0

Using V=V, + V, as a LFC for the total system, we find that the total system is
GES under the following condition:

1. .
" T KS E F (q, q! r) i,n
1 _|>0 (30)
¢ SF7@.q.6) K, ¢

By choosing K, and K positive definite, this condition can easily be satisfied since
1F(q,q,£)] is bounded. Note that V; and thus V is not strictly negative. However,
with the constraint /2 + £ = 1, Vis strictly negative along the solution of the system.
Moreover, the constraint also gives GES. This completes the proof.

3.2. Robust stability

The above result can be extended to include robustness to noise and other bounded
disturbances and modelling errors. When noise and other bounded errors, like
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unmodeled accelerometer/gyro errors and GPS multipath, are included, the error
model (23) becomes:

a = rrf.](fl) [alwimu + B + W, _K] (£+ HTvl)Sgn (ﬁ)]

b= —T; b Ky(+ H'v,)sgn (i) +w,
: 31)
'é = - rl?._ ! K— 2 K,‘dlﬂg(f—F 1 I+""1 )wimu Sgn (ﬁ) + W3
G =T &= KT (G H'Y, )i, 20 () + W
while the error model (24) becomes:
V' =Ry[A, fiu + b, + ws] + (RE — RDf — [2S(00f,) + S(wf,) "
— K5 (¥ + (E9)'v;) — (RE)T(E + (E°)'v5)
= RV — K (7 + {F,"}*vj)
b, = — T 'b, — K, (R + (E9)'v,) + wq
(32)

o0y
il

- — Ty '8~ Kgdiag(fim) RY)TE + (E9)'v,) + W,
B=—Ti ' B—KYT(f;) (RDTGE" + (E)'v;) + wy
J= =15 T kyo(F+ (€5) 1) — ( + (€5)1v3) + w,

T :f— kyy (7 +(€5)'vs) + wyp

Define the vector x =7, &7, b7, &7, a", ()7, (¥)", b1, &, B7. 7. #]", the matrices

K, 0 0 0
0 2K, T 0 0
Ql: : ! — 19— 1
0 K 'T; 0
0 0 0 KT !
K, 0 0 0 0 0 0|
0 I, 0 0 0 0 0
0 0 KTyl 0 0 0 0
=l 0o o 0 Ko 'T:! 0 0 0
0 0 0 0 KT, 0 0
0 0 0 0 0 t7 4k O
Lo o 0 0 0 0 Kyy
%F(q,q,f} O 0 0 0 0 0
Q, = 0 0O 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Q Q;
o[
Qs Q;_

K,H'y,
K; 'w, +H'y,
K3 'w; + diag(o;,,)H'v,
Ki 'w, + Y(w;, ) H'y,

and the vectors

n, =

[~ KS(E9)', + (RS (E)'v,
Kh(E“)t"n
K, l“'ﬁ + (ﬁﬁ)T(E")*vz
n,=| Kg 'w; + diag(f,.,) R7)(E*)'y,
Kg 'wg + Y(fim) (R7)T(E)v,
kyo(ex )T"z +wo + (€% )*VJ

- kyr () vy +wyg =

=@l nll"
The vector n 1s bounded by
|[ n ” g nl’"ax

since w; and v; are assumed bounded. The following collorary can now be proven.

Corollary 2 The solution x(t) of the error equations (31) and (32) is uniformly ultimately
bounded with the bound ||x|| < ]| Q™ 'n,.,.|
Following the outline of the proof of Theorem | above we get:

V< —x"Qx +x™n

Thus, when K;, i€[l, .. .,4] are chosen such that Q is positive definite, the solution
x(f) will converge to the ball

X T <TQ ™ Nppa

4. Case study

In this section, we will show the performance of the combined attitude, position
and velocity observer in the case of scale-factor and bias estimation. In the simulations
below, the gravity vector was fixed to give a stable vertical channel. No attempt was
made to constrain the height during GPS outages. The true correlation times for the
almost constant part of the biases were chosen large, that is, in the range of 10000-
100000 seconds. The time constants used in the observer were chosen wrong by a
factor of up to ten, but the errors in the time constants had no significance during the
time the simulations lasted.

Scale-factor errors can give substantial contributions to position, velocity and
attitude errors during highly dynamic maneuvers. For example, if a missile is accelerat-
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Table 3. Simulated IMU data

ACCC'CT-OTI:I(;I'E_TH Gyros
Bias 1.0mg 0.002 rad/s
Scale-factor error 0.03% 0.3%
Noise 0.1mg 0.2 radi\fﬁ

ing at 20 m/s? for 50 seconds with a scale-factor error of 100 ppm, the resulting velocity
error will be 0.1 m/s, while the position error will be 2.5m. This is not very important
in cases where continuous GPS measurements are available. But in the case of GPS
outage during maneuvers, the errors will in general build up for each maneuver. The
exception to this is applications with symmetric or periodic maneuvers, since errors
will cancel out. In this case, only scale-factor unsymmetry will be a factor.

Scale-factor errors are only observable during acceleration or attitude changes.
The best way of estimating them, is to perform certain maneuvers on purpose. In this
way, the filter can be tuned to get the best estimate for the time a given maneuver lasts.
It is also an advantage to estimate biases to a certain accuracy beforehand, something
which can be accomplished in most cases, since no maneuvering is needed to observe
the biases. If biases are not estimated beforehand, more time and maneuvers are
necessary to estimate biases and scale-factors simultaneously.

To show the effect of scale-factor errors, we simulated a vehicle under course
changing maneuvers. In the simulations, data from a low cost IMU shown in Table 3,
was used. Accelerometer scale-factor errors were not estimated, since the effect of
them were minor. The trajectory was repeated after 200s, and lock is lost on all
satellites for the last 200 seconds. The maneuvers started at 40 seconds, which gave
time for the gyro biases to converge before the scale-factor errors became observable.
Figure 3 shows the PVA errors that built up during the outage when bias estimation
was included, but scale-factor error estimation was omitted. The error that builds up
in attitude the first 20 seconds is due to gyro bias, while the error in yaw after about
70 seconds is due to the yaw rate scale-factor error.

For the case where scale-factor errors were estimated, the PVA response is shown
in Figure 4. A clear difference in heading error can be seen, in addition to a smaller
error in position due to the more accurate heading. The gyro bias and scale-factor
error estimates are shown in Figure 5. Due to very little roll and pitch motions, only
the yaw rate scale-factor error estimate has converged close to the true value,

5. C(mclusrions

In this paper, some of the features of integrated inertial and satellite navigation
systems are described. A combined attitude and position/velocity observer for the
purpose of integration has been presented. The observer is suitable for direct inte-
gration architectures, as opposed to the extended Kalman-filter. Compared to the
latter, the observer has major computational advantages in a direct architecture. The
direct approach is, in our opinion, more intuitive and less complex than the indirect
approach employed by most other designs, and the observer is also a little less
computationally demanding than these. The origin of the observer error-system has
been proven globally exponentially stable, while the popular extended Kalman-filter
only has been proven locally exponentially stable. Finaily, robust stability in the
presence of noise and unmodelled effects have been proven.
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Figure 3. Attitude, ECEF position, and NED velocity errors when scale-factor errors are not

estimated. The solid lines are the first axes (roll, ECEF x-axis, and north respectively), the dotted

lines are the second axes, and the dashed lines are the third axes. No satellite measurements were
available from 200-400s.
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Figure 4. Attitude, ECEF position, and NED velocity errors when scale-factor errors are

estimated. The solid lines are the first axes (roll, ECEF x-axis, and north respectively), the dotted

lines are the second axes, and the dashed lines are the third axes. No satellite measurements were
available from 200-400s.
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Figure 5. Upper plot: Gyro scale-factor errors in black, and true scale-factor errors in grey.

Yaw rate error is solid, while roll and pitch rate errors are dashed and dotted respectively. Lower

plot: Gyro bias esumates are in black, while the true values + gyronoise is in grey. Estimation
is turned off at 200 s when GPS measurements are lost.
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