**Page description appears here**

“Motion Control of underwater vehicle-manipulator systems using feedback linearization”

Authors: Ingrid Schjølberg and Olav Egeland,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1996, Vol 17, No 1, pp. 17-26.

     Valid XHTML 1.0 Strict


Keywords: Underwater robotics, feedback linearization

Abstract: In this paper control of underwater vehicle-manipulator systems using feedback linearization has been studied. Performance, robustness and energy consumption of the system depend on the choice of output variables, these output variables can be chosen in several ways. In this paper two alternatives have been analysed by simulations, decoupling of the manipulator end-effector velocities from the vehicle velocities and from the total system momentum. The performance is almost the same for the two choices of decoupling schemes while robustness and energy consumption of the system depend on the accuracy of the dynamic model.

PDF PDF (949 Kb)        DOI: 10.4173/mic.1996.1.2



DOI forward links to this article:
  [1] W.-C. Lam and T. Ura (1996), doi:10.1109/AUV.1996.532403
  [2] Yaoyao Wang, Surong Jiang, Bai Chen and Hongtao Wu (2017), doi:10.1109/ACCESS.2017.2701350
  [3] Waldemar Kolodziejczyk (2018), doi:10.1016/j.oceaneng.2018.01.090
  [4] Satja Siv ev, Joseph Coleman, Edin Omerdi , Gerard Dooly and Daniel Toal (2018), doi:10.1016/j.oceaneng.2018.06.018


References:
[1] DUBOWSKY, S. PAPADOPOULOS, E. (1993). The kinematics, dynamics, and control of free-flying, and free-floating space robotic systems, IEEE Transactions on Robotics and Automation, .5, 531-543 doi:10.1109/70.258046
[2] EGELAND, O. SAGLI, J.R. (1993). Coordination of motion in a spacecraft/manipulator system, Int. Journal of Robotics Research. Vol. 12, No. 4, Aug. 1993, pp. 366-379 doi:10.1177/027836499301200404
[3] FOSSEN, T.I. (1991). Nonlinear Modelling and Control of Underwater Vehicles, PhD thesis. Norwegian Institute of Technology. University of Trondheim, Trondheim, Norway.
[4] FOSSEN, T.I. (1994). Guidance and Control of Ocean Vehicles, John Wiley and Sons Ltd.
[5] HUGHES, P. (1986). Spacecraft Attitude Dynamics, John Wiley and Sons Ltd.
[6] SAGLI, J.R. (1991). Coordination of Motion in Manipulators with Redundant degrees of freedom, PhD thesis. The Norwegian Institute of Technology, University of Trondheim, Norway.
[7] SCHJØLBERG, I. FOSSEN, T.I. (1994). Modelling and control of underwater vehicle-manipulator systems, In: Proc. of the 3rd Int. Conf. on Manoeuvring and Control of Marine Craft. Southampton, England.
[8] SPONG, M. W. VIDYASAGAR, M. (1989). Robot Dynamics and Control, John Wiley and Sons Ltd.


BibTeX:
@article{MIC-1996-1-2,
  title={{Motion Control of underwater vehicle-manipulator systems using feedback linearization}},
  author={Schjølberg, Ingrid and Egeland, Olav},
  journal={Modeling, Identification and Control},
  volume={17},
  number={1},
  pages={17--26},
  year={1996},
  doi={10.4173/mic.1996.1.2},
  publisher={Norwegian Society of Automatic Control}
};

News

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.