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Motion control of underwater vehicle-manipulator systems
using feedback linearization
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In this paper control of underwater vehicle—manipulator systems using feedback
linearization has been studied. Performance, robustness and energy consumption of
the system depend on the choice of output variables, these output variables can be
chosen in several ways. In this paper two alternatives have been analysed by
simulations, decoupling of the manipulator end-effector velocities from the -vehicle
velocities and from the -total system momentum. The performance is almost the
same for the two choices of decoupling schemes while robustness and energy
consumption of the system depend on the accuracy of the dynamic model.

1. Introduction

Semi-autonomous vehicle-manipulator systems are useful for space and under-
water operations. To be able to perform operations like inspection, maintenance, repair
and service work on space and underwater installations, accurate control of both the
vehicle and the manipulator end-effector is essential.

The feedback linearization technique (Spong and Vidyasagar, 1989) is a common
approach to control design of robotic systems. The concept is to choose an appropriate
feedback loop so that the nonlinearities in the system are cancelled. This results in a
linear system for which many control techniques are available. The disadvantage with
the feedback linearization method is that exact knowledge of the system dynamics is
required. Nevertheless, the simplicity of the technique and the possibili ty of using linear
control techniques makes the feedback linearization method atiractive.

Feedback linearization has been utilized to control spacecraft-manipulator systems,
see for instance Dubowsky and Papadopoulos (1993) who decoupled the spacecraft
position and attitude vector from the manipulator position and orientation vector.
Egeland and Sagli (1993) suggested decoupling the manipulator motion and the system
total linear and angular momentum. This resulted in a more energy-efficient control
scheme.

Controllers based on the feedback linearization technique may also be applied to
underwater vehicle-manipulator systems. However, these systems are affected by
hydrodynamical forces and possess uncertainties in the hydrodynamical coefficients
and damping terms. It is therefore necessary to study the performance and robustness
of the control schemes based on feedback linearization. In this paper the decoupling
schemes suggested in Egeland and Sagli (1993) are applied to an underwater
vehicle-manipulator system and the schemes are evaluated by simulations, considering
robustness, performance, energy consumption and implementation simplicity.
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This paper is organized as follows: in Section 2 the dynamics and kinematics of the
vehicle—manipulator are retrieved. The control laws are reformulated in Section 3, and
a simulation study of the closed loop systems is presented in Section 4 with the
conclusions in Section 5.

2. System dynamics and kinematics

The equations of motion for an underwater vehicle-manipulator system presented
in Schjglberg and Fossen (1994) are summarized in the following section.

2.1. Egquations of motion for vehicle—manipulator systems

The equations of motion of an underwater manipulator attached to an underwater
vehicle can be written in the form

M,(@)§ + Co(q.9)q + Di(q. 4. v)§ + 8lq) + MAq)V + C3(q.4,v)
+D3(q.4,v) = T D

where g € R" is the vector of generalized coordinates for the manipulator and t,, € R™
is the manipulator control force vector and », is the number of manipulator joints. The
vector v is the vector of generalized vehicle velocities in a body-fixed frame. The matrix
M,, € R"*™ is the matrix of inertia and added inertia, C,, € R™ ™™ is the matrix of
Coriolis and centripedal terms, D,, € R " is the matrix of hydrodynamical damping
terms and g,, € R™ is the vector of gravity and buoyant forces. The matrix M, is due
to the reaction force between the vehicle and the manipulator and the matrices C3 and
D, are the Coriolis and centripetal terms and the damping effects on the manipulator
due to the vehicle motion. Similarly the equations of motion for an underwater vehicle
holding a manipulator can be written, in a vehicle—fixed reference frame

M+ C,(v)v +D.(vv+gum) +flq.q.4,v) =7, (2)

where v € R and € R". According to the SNAME notation v = [u, v, w,p, g, r"is
the vector of linear and angular velocities. The vector # is the position/attitude vector
of the vehicle in the inertial reference frame (I-frame). The scalars n; and m are the
vehicle degrees of freedom in the body-fixed and earth-fixed reference frame. The
vector 1, € R is the vector of control forces and moments and the vector f € R™ are
the forces and moments applied by the manipulator on its base. The matrix M, € R™
is the inertia and added inertia matrix, C,(v) € R"™>" is the matrix of Coriolis and
centripetal terms, D (v) € R"™*" is the hydrodynamic damping matrix and g.(y) € R"™
is the vector of gravity and buoyant forces. The reaction forces and moments f applied
by the manipulator on its base can be written in the form

flg,q.4,v) = H(g)v + C\(q,q,v)v + D\(q,q,v)v + M(q)§ + C(q,§)q (3)
+Dg.4,v)q§ +ge

The matrices M.(q) = MT are the terms due to the reaction forces between the vehicle
and manipulator and H(g) = H" is the added inertia due to the mass of the manipulator.
The matrices C; contain the Coriolis and centripetal terms and D; contains the damping
terms due to the interaction between the manipulator and the vehicle rigid body.
The vector gx(q) is the increased gravitational forces and moments due to the
manipulator motion.
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Figure 1. Vehicle-manipulator system.

Combining the equations of motion of the manipulator and the vehicle yields the
total dynamic model in a vehicle-fixed frame, located at the manipulator base

M(g)i + C(g.u)u + D(q,u)u +g(q,n) =t 4)

571" is the vector of generalized velocities. The system matrices are

.
where u = [v',

o=y o)
gy =[S0 T Cladm Caa.d]
D=t " e
san=(o ]

— T _TqT
= [tv" tm]

The total system has n; + n, degrees of freedom.

2.2. Kinematic equations

There are several working tasks for underwater vehicle-manipulator systems.
The tasks demand the control of the manipulator end-effector position and orientation
vector x. and the vehicle position and attitude vector . The manipulator end-effector
position and orientation in the base-frame 0 is denoted %,. The end-effector velocity
vector can be written

[ Op,
%=, ]=J|v+qu" &)
| “w,
where
(I3 oy ]
— 6
J 0 I, ()
af ..., B,
ey 7
2 B . P @
and o, = — 2L S(R{d); 1) and P =R} 'z. The matrix S is a skew-symmetric matrix
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operator defined such that: @ X b = S(a)b. The vector djj; -, is the length of manipulator
arm j and z is the unit vector along the z-axis.

The kinematic transformation between the I-fixed and vehicle-fixed reference frame
is given by # = J,(#2)v (Fossen, 1994), where

Jvl 0]
0 JVZ

and 57 = [y}, 131", g1 is the position vector and x, is the attitude vector. The end-effector
velocity vector %, can be expressed in the I-frame

Jnp2) =

%, = R,
where
J vl 0
m=[ 1)
“lo 1

and 7 is the 3 X 3 identity matrix.

2.3. System momentum

The system motion can be described in terms of the system momentum. The linear
and angular momentum of a system of rigid-bodies are defined (Hughes 1986)

ny y
p= > my; and h="> Lo;+riXp;
i=0 i=0

where m; is the mass of body i, v; is the linear velocity of body i, I; is the moment of
inertia, e; is the angular acceleration r; is the position of the end-point of body i and
pi is the linear momentum of body i. The external forces acting on the system are the
control forces 7, and the hydrodynamical forces, the Coriolis and centrifugal forces and
the gravity and buoyant forces denoted n(g, u, #). The system momentum can be written
as a function of the system velocities (Sagli, 1991)

p
[o] = Pt ®

The change in the system linear and angular momentum can be expressed

e

3. Case study

In the following section feedback linearization is applied to an underwater vehicle
and manipulator system and two control laws are given for control of the vehicle and
the manipulator end-effector.

3.1. Control laws

Feedback linearization of the vehicle dynamics is achieved by defining a controller
in the form

©=M(qg)a,+ C(g,u)u + D(q,u)u + g(q, 12) (10)

This concept assumes that the vehicle velocities and the joint velocities are measured
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as well as the vehicle position and attitude and the manipulator joint angles. Applied
to the equations of motion (4) for the total system, yields the linearized system

u=a, an

The augmented task velocity vector y is chosen according to the requirements of the
task and can be written y = Pou where Py is a Jacobian dcfined according to the task.
The time derivative y is

¥ =Pyt + Pou (12)
This gives

=Py '(y — Pou)=a, (13)

y=Poa,+ Pu=a, (14)
and the control vector

a,= P, '(a,— Pou) (15)
This yields the closed loop error dynamics of the linearized system

y—a,=0 (16)

Two choices for the task velocity vector y are:

(1) Decoupling the manipulator end-effector velocities from the vehicle velocities
by defining
J’xte
y= [ . ] 17)

This is a scheme utilized in the control of spacecraft-manipulator systems.

Tracking convergence of the system position/attitude and velocities is achieved

using the control law

_ [fed — KX — Kdlfe]
fja — Kpoif — Kty
where 7 is the vehicle position/attitude error vector # = § — na. The superscript
d indicates the desired value. The vector %, is the manipulator position/orien-
tation error vector ¥, ='x, —’x,d. The end-effector velocity error vector is
defined %, = [V} “@,]".
Remark 1. The manipulator controller is able to compensate for unpredicted
vehicle motion due to the control of the end-effector in the I-frame. The vehicle
thrusters are used to compensate for the reaction forces due to the manipulator
motion.

(2) Egeland and Sagli (1993) suggested for a spacecraft-manipulator system to
decouple the end-effector motion from the total system momentum to reduce
energy consumption. Decoupling of the manipulator end-effector velocities

from the total system momentum is achieved by defining the task velocity
vector

(18)

ay,

y=|'p (19)
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The system motion can be controlled using the control law
_ [ Foa — KpiFe — Kan¥e ]
" LPoiGia— Kpol — Koo

Remark 2. From (9) it can be seen that the control vector has to counteract the
hydrodynamical friction forces to be able to change the system momentum.

(20)

Integral action can be easily obtained by including the term fo Zdt (where z is the
position/attitude error vector) in the controliers. Scheme (18) is computationally more
efficient than scheme (20) since the last scheme demand the computation of the
Jacobians Po; and Pg,.

4. Simulation study

The objective of the simulation study was to evaluate the performance, energy
consumption and robustness of the closed loop system utilizing the controllers (18) and
(20).

A simulation model of an underwater vehicle carrying a planar two-arm manipulator
system was implemented in Matlab. The model of the vehicle was based on the
theoretical model of the Norwegian Experimental Remotely Operated Vehicle
(NEROV) (Fossen, 1991), with vehicle weight set to 185kg. The manipulator links
were assumed to be cylindrical with diameter = 0-1 m and length /= 0-5m. The dry
mass of a manipulator link was set to 25 kg. The hydrodynamical damping was modeled
as a sum of linear skin-friction, quadratic drag, lift force and rotational damping.
The added inertia matrix was assumed to be diagonal. The hydrodynamical friction
coefficients were functions of the angle of attack «, angle of sideslip  and the Reynold
number (Schjglberg and Fossen, 1994). It was assumed that the fluid had
Reynolds number Rn = 10°, drag and lift coefficients Cp = 1-12, G, = 0-250, linear skin
friction coefficient D,=0-1 and rotational damping coefficients Cj, = —0-la,
C,,= — 0-1a and C,, = — 2f. The Strouhal number was chosen equal to 0-2 and the
phase angle y=0. The flow velocity was generated by a st order Gauss—Markov
Process Vy(f) = w(f) — %Vf(t), were w(f) was a zero mean Gaussian white noise process
and T was the sampling time. Further, V; was limited by 0-1 < V;=<0-6.

The end-effector reference was chosen as a sinusoidal signal in the x- and z-direction

r=1 + sin (0-571) 21)

and with a constant component in the y-direction. The end-effector orientation was
chosen to be constant. The redundancy resolution produced the vehicle reference in the
x-, y- and z-direction. The vehiclc attitude vector was chosen as

72 =[0-1,0-1,0-1]" (22)
Km 1 KPIZ KPQI szz
100/ 1004 I I
-Kd| 1 Kdl 2 Kd?,l Kdzz
200 201 21 21

Table 1. Parameters in the control laws.
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Figure 2. Simulation of the end-effector position/orientation error using (18).

7 o2

=3

gt

12

1w 20 an 40 50 80 70 L 90 0o

Figure 3. Simulation of the vehicle position/attitude error using (18).

All state variables were initially zero. The vehicle and manipulator dynamics were
simulated using the 4th order Runge—Kutta method with sampling time equal to 0-1 for
the vehicle dynamics and sampling time equal to 0-01 for the manipulator dynamics.

The controller (18) was tuned under the requirement of high tracking accuracy and
speed, and assuming exact knowledge of the system model, see Table 1. The tracking
error of the end-effector position/orientation vector and the vehicle position and attitude
vector with controllers (18) and (20) are shown in Figs. 2-5.

The performance was evaluated by computing

1 k
Ji=7 > il (23)

i=1

1 k
Jz—_—z D, Eix., (24)

i=1

where k was the number of samples. The amount of vehicle control torque required in
the x-, y- and z-directions was compared by calculating

k
J3i=2 |u) (25)

i=1

k
Jo=2 |z (26)

i=1
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Figure 4. Simulation of the end-effector position/orientation error using (20).
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Figure 5. Simulation of the vehicle pesition/attitude error using (20).

k
Js= 2> |l (27)

i=1

The performance and energy consumption indices using the controllers (18) and (20)
are shown in Table 2.

Comment 1. The performance indices in Table 2 were almost equal for the two
controllers but the total energy consumption was larger using the second controller (20).
The reason for this is that the control vector has to counteract the hydrodynamical forces
to be able to change the system momentum, in contrast to control of spacecraft-system
where the control vector directly changes the system momentum.

The robustness to model uncertainties was evaluated by including uncertainties in
the manipulator dynamics and in the vehicle dynamics. Two cases of uncertainty were
considered;

e Case 1. A 20% uncertainty was added to the hydrodynamical coefficients.
The vehicle damping was assumed to be linear and the manipulator damping was
assumed to be linear and quadratic, excluding the vortex shedding effect.
The indices are shown in Table 3.

e Case 2. The vehicle and manipulator damping matrix was assumed to be constant.
The added mass and added moment of inertia coefficients were assumed to be
completely unknown and the reaction forces were neglected. The indices are
shown in Table 4.
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Ji J2 J3 Ja Js

a, 044 041 156 6 185
a, 044 030 19 76 176

Table 2. Performance and energy consumption indices assuming completely known model.

Case 1

J[ Jz Js Ja Js

a, 056 049 189 23 23]
a, 07 046 209 91 226

Table3. Performance and energy consumption indices assuming 20% uncertainty in the model.

Case 2
Ji Jy Ja J; Js
ay, 26 1-2 188-9 180 2977

a, 145 09 1586 93 329

Table 4. Performance and energy consumption indices assuming unknown model.

Jy g2 g5 I, Js

a, 048 043 168 53 175
a, 052 033 202 78 167-6

Table 5. Performance and energy consumption indices with drift in the vehicle motion.

Comment 2. The controller (18) was more robust to small uncertainty in the dynamic
model while the controller (20) was more robust to large uncertainty in the dynamic
model. The reason for this is that the control law (20) includes the dynamic term Py,
while the decoupling of the end-effector velocity and vehicle velocity is purely a
kinematic decoupling.

Robustness of the manipulator controller to unpredicted vehicle motion was
investigated by adding a constant signal to the vehicle position/attitude vector.

Comment 3. Unpredicted drift in the vehicle motion resulted in almost the same
performance for the two controllers. The energy consumption was lower using the first
controller (18) since the end-effector was controlled in the I-frame.

5. Conclusions

In this paper two decoupling schemes suggested in (Egeland and Sagli, 1993) for
control of spacecraft systems have been applied to an underwater vehicle-manipulator
system. The closed-loop systems have been studied and performance, energy
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consumption and robustness have been evaluated through a simulation study. The
simulation study has shown that the performance indices are almost the same for the
two control schemes. With high accuracy in the dynamic model the energy consumption
is lower with the conventional scheme, but for systems with large model uncertainty
the scheme of decoupling the end-effector velocity from the system momentum 20)
is more robust. The conventional scheme is shown to be more robust to drift in the
vehicle motion.
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