**Page description appears here**

“Approaches for Stereo Matching”

Authors: Takouhi Ozanian,
Affiliation: NTNU, Department of Engineering Cybernetics and University of Hull, UK
Reference: 1995, Vol 16, No 2, pp. 65-94.

     Valid XHTML 1.0 Strict


Keywords: Computer vision, binocular stereo, feature selection, correspondence, constraints, matching, energy minimization, parallelism, trinocular stereo

Abstract: This review focuses on the last decade´s development of the computational stereopsis for recovering three-dimensional information. The main components of the stereo analysis are exposed: image acquisition and camera modeling, feature selection, feature matching and disparity interpretation. A brief survey is given of the well known feature selection approaches and the estimation parameters for this selection are mentioned. The difficulties in identifying correspondent locations in the two images are explained. Methods as to how effectively to constrain the search for correct solution of the correspondence problem are discussed, as are strategies for the whole matching process. Reasons for the occurrence of matching errors are considered. Some recently proposed approaches, employing new ideas in the modeling of stereo matching in terms of energy minimization, are described. Acknowledging the importance of computation time for real-time applications, special attention is paid to parallelism as a way to achieve the required level of performance. The development of trinocular stereo analysis as an alternative to the conventional binocular one, is described. Finally a classification based on the test images for verification of the stereo matching algorithms, is supplied.

PDF PDF (4086 Kb)        DOI: 10.4173/mic.1995.2.1



DOI forward links to this article:
  [1] Gonzalo Pajares, Jesús M Cruz and Joaqu n Aranda (1998), doi:10.1016/S0031-3203(97)00069-1
  [2] J.Y Goulermas and P Liatsis (2001), doi:10.1016/S0031-3203(00)00163-1
  [3] Gonzalo Pajares and Jesús M. de la Cruz (2000), doi:10.1016/S0165-0114(97)00382-5
  [4] Wan-Chiu Li, C. H. Leung and Y. S. Hung (2004), doi:10.1002/ima.20024
  [5] J.Y Goulermas and P Liatsis (2000), doi:10.1016/S0031-3203(99)00145-4
  [6] Gonzalo Pajares, Jesús Manuel de la Cruz and José Antonio López-Orozco (2000), doi:10.1016/S0031-3203(99)00036-9
  [7] C.H. Leung, W.C. Tam and Y.S. Cheung (1998), doi:10.1016/S0262-8856(98)00063-8
  [8] Gonzalo Pajares and Jesús M. de la Cruz (2001), doi:10.1016/S0167-8655(01)00097-6
  [9] R. Correal, G. Pajares and J.J. Ruz (2014), doi:10.1016/j.eswa.2013.09.003
  [10] G. Pajares, J. M. Cruz and J. A. L pez-Orozco (1998), doi:10.1007/BF01237939
  [11] Te-Hsiu Sun (2007), doi:10.1080/10170660709509021
  [12] G. Pajares, J.M. Cruz and J. Aranda (1998), doi:10.1016/S0167-8655(98)00003-8
  [13] C.H. Leung and C.Y. Suen (1998), doi:10.1109/3477.718520
  [14] G. Pajares, J.M. Cruz and J.A. Lopez-Orozco (1999), doi:10.1109/3477.775274
  [15] J.Y. Goulermas and P. Liatsis (2003), doi:10.1109/TEVC.2003.817460
  [16] J.-P. Muller, A. Mandanayake, C. Moroney, R. Davies, D.J. Diner and S. Paradise (2002), doi:10.1109/TGRS.2002.801160
  [17] J.Y. Goulermas, P. Liatsis and T. Fernando (2005), doi:10.1109/TCSVT.2005.844451
  [18] R.M.L.O. Mendonca and M.F.M. Campos (1998), doi:10.1109/SIBGRA.1998.722779
  [19] E.E. Hemayed, M.S. Brown, A.A. Farag and W.B. Seales (1999), doi:10.1109/AERO.1999.789801
  [20] M. Jenkin and P. Jasiobedzki (1998), doi:10.1109/IROS.1998.724797
  [21] Raul Correal, Gonzalo Pajares and Jose Ruz (2016), doi:10.3390/robotics5040024
  [22] Gonzalo Pajares, Jesûs Manuel de la Cruz and José A. López (1998), doi:10.1007/BFb0033330


References:
[1] ALLEN, P. (1987). Robotic Object Recognition Using Vision and Touch, Boston Kluwer.
[2] ARNOLD, R. BINFORD, T. (1980). Geometric constraints in stereo vision, In Image Processing for Missile Guidance, Proc. SPIE, 238,281-292.
[3] AYACHE, N. (1991). Artificial Vision for Mobile Robots: Stereo Vision and Multisensory Perception, MIT Press, Cambridge, MA, USA.
[4] AYACHE, N. HANSEN, C. (1988). Rectification of images for binocular and trinocular stereovision, In Proc. 9th Int. Conf. Pattern Recognition, Rome, pp. 15-20.
[5] AYACHE, N. LUSTMAN, F. (1991). Trinocular stereo vision for robotics, IEEE Trans. Pattern Anal. Machine Intell., 13, 73-85 doi:10.1109/34.67633
[6] BALLARD, D. BROWN, C. (1982). Computer Vision, Prentice-Hall: Englewood Cliffs, New Jersey.
[7] BARNARD, S. (1989). Stochastic stereo matching over scale, International Journal of Computer Vision, 3, 17-32 doi:10.1007/BF00054836
[8] BARNARD, S. FISCHLER, M. (1982). Computational stereo, ACM Computing Surveys, 14, 553-572 doi:10.1145/356893.356896
[9] BELHUMEUR, P. (1992). A bayesian treatment of the stereo correspondence problem using half-occluded regions, Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Urbana, IL, pp. 506-512.
[10] BELHUMEUR, P. (1993). A binocular stereo algorithm for reconstructing sloping, creased and broken surfaces in the presence of half-occlusion, In Proc. 4th Int. Conf. on Computer Vision, Berlin, pp. 431-438.
[11] BELLMAN, R. DREYFUS, S., (1962). Applied Dynamic Programming, Princeton Univ. Press.
[12] BERTERO, M., POGGIO, T. TORRE, V. (1988). Ill-posed problems in early vision, Proc. of the IEEE, 76, 869-889 doi:10.1109/5.5962
[13] BILBRO, G., MANN, R., MILLER, T., SNYDER, W., VAN DEN BOUT, D. WHITE, M. (1989). Optimization by mean field annealing, In Advances in Neutral Information Processing Systems I.ed. D.S. Touretzky, pp. 91-98.
[14] BLAKE, A. ZISSERMANN, A. (1987). Visual Reconstruction, MIT Press, Cambridge, MA.
[15] BLOSTEIN, S. HUANG, T. (1987). Error analysis in stereo determination of 3D point positions, IEEE Trans. Pattern Anal. Machine Intell., 9, 752-765 doi:10.1109/TPAMI.1987.4767982
[16] BOLTES, R., BAKER, H. HANNAH, M. (1993). The JISCT stereo evaluation, In Proc. ARPA Image Understanding Workshop, pp. 263-274.
[17] BOYER, M. KAK, A. (1988). Structural stereopsis for 3D vision, IEEE Trans. Pattern Anal. Machine Intell., 10, 144-166 doi:10.1109/34.3880
[18] BOYER, K., WUESCHER, D. SARKAR, S. (1990). Dynamic edge warping: Experiments in disparity estimation under weak constraints, In Proc. 3rd Int. Conf. Comp. Vision, Osaka, pp. 471-475.
[19] BRAUNEGG, D. (1990). Stereo feature matching in disparity space, In Proc. IEEE Int. Conf. Robotics and Automation, Cincinnati, OH, USA, pp. 796-803.
[20] BRINT, A. BRADY, M. (1990). Stereo matching of curves, Image and Vision Computing, 8,50-56 doi:10.1016/0262-8856(90)90056-B
[21] BURNS, J., HANSON, A. RISEMAN, E. (1986). Extracting straight lines, IEEE Trans. Pattern Anal. Machine Intell., 8, 424-455 doi:10.1109/TPAMI.1986.4767808
[22] BUTLER, N (1992). Matching stereo satellite images, In Proc.. Int. Conf. Pattern Recognition, vol. 1, Hague, The Netherlands, pp. 716-719.
[23] CANNY, J. (1985). A computational approach to edge detection, IEEE Trans. Pattern Anal. Machine Intell., 8,679-689 doi:10.1109/TPAMI.1986.4767851
[24] CHAKRAPANI, P., KHOKHAR, A. PRASANNA, V. (1992). Parallel stereo on fixed size arrays using zero-crossings, In Proc. Int. Conf. on Pattern Recognition, vol. 4, Hague, The Netherlands, pp. 79-82.
[25] CHANG, C. CHATTERJEE, S. (1990). Multiresolution stereo - A bayesian approach, In Proc. 10th Int. Conf. Pattern Recognition, Atlantic City, NJ, pp. 908-912.
[26] CHANG, C., CHATTERJEE, S. (1992). A deterministic approach for stereo disparity calculation, In Proc. European Conference Computer Vision, Italy, pp. 420-424.
[27] CHAPRON, M., COCQUEREZ, N. LIU, N. (1992). Precision of camera calibration and stereo vision performed by standard cameras and image digitizer, In Proc. Int. Conf. Pattern Recognition. vol. 1. Hague, The Netherlands, pp. 704-707.
[28] CHEN, J.-S. MEDIONI, G. (1990). Parallel Multiscale Stereo Matching Using Adaptive Smoothing, In Proc. First European Conference Computer Vision, Antibes, France, pp. 99-103.
[29] COCHRAN, S. MEDIONI, G. (1992). 3D surface description from binocular stereo, IEEE Trans. Pattern Anal. Machine Intell., 14, 981-994 doi:10.1109/34.159902
[30] DERICHE, R. (1987). Using Canny´s criteria to derive a recursively implemented optimal edge detector, Int. Journal of Computer Vision, 2, 167-187 doi:10.1007/BF00123164
[31] DERICHE, R. FAUGERAS, O. (1990). 2D curve matching using high curvature points: application to stereo vision, In Proc. 10th Int. Conf. Pattern Recognition, Atlantic City, NJ, pp. 240-242.
[32] DHOND, U. AGGARWAL, J. (1992). Analysis of the stereo correspondence process in scenes with narrow occluding objects, In Proc. Int. Conf Pattern Recognition, vol. 1, Hague, The Netherlands, pp. 470-473.
[33] DHOND, U. AGGARWAL, J. (1992). Computing stereo correspondences in the presence of narrow occluding objects, In Proc. Int. Conf Comp. Vision and Pattern Recognition, Champaign, IL, USA, pp. 758-760.
[34] DHOND, U. AGGARWAL, J. (1990). Binocular versus trinocular stereo, In Proc. IEEE Int. Conf. Robotics and Automation, Cincinnati, OH, USA, pp. 2045-2050.
[35] DHOND, U. AGGARWAL, J. (1989). Structure from stereo, IEEE Trans. on Systems, Man, and Cybernetics, 19, 1489-1510 doi:10.1109/21.44067
[36] DRUMHELLER, M. POGGIO, T. (1986). On parallel stereo, In Proc. IEEE Int. Conf. Robotics and Automation, San Francisco, California, pp. 1439-1448.
[37] EASTMAN, R. WAXMAN, A. (1987). Using disparity functionals for stereo correspondence and surface reconstruction, Comp. Vision Graph. Image Proc., 39, 73-101 doi:10.1016/S0734-189X(87)80203-7
[38] FAUGERAS, O., LUONG, Q.-T., MAYBANK, S. (1992). Camera self-calibration: theory and experiments, In Proc. European Conference Computer Vision, Santa Margherita, Ligure, Italy, pp. 321-334.
[39] FAUGERAS, O. TOSCANI, G. (1986). The calibration problem for stereo, In Proc. Conf. Computer Vision and Pattern Recognition, Miami Beach, Florida, USA, pp. 15-20.
[40] FORNLAND, P., JONES, G., MATAS, G., KITTLER, J. (1993). Stereo correspondence from junctions, In Proc. 8th Scandinavian Conference on Image Analysis, Tromsø, Norway, vol. 1, pp. 449-455.
[41] FUA, P. (1993). A parallel stereo algorithm that produces dense depth maps and preserves image and features, Machine Vision and Applications, 6, 35-49 doi:10.1007/BF01212430
[42] GAGALOWICZ, A. VINET, L. (1989). Region matching for stereo pairs, In Proc. 6th Scandinavian Conf on Image Analysis, Oulu, Finland, vol. 1, pp. 63-70.
[43] GEIGER, D., LADENDORF, B. YUILLE, A. (1992). Occlusions and binocular stereo, In Proc. European Conf. Comp. Vision, Santa Margherita Ligure, Italy. pp. 425-433.
[44] GRIMSON, W. (1993). Why stereo vision is not always about 3D reconstruction?, MIT, Al Lab, A.I. Memo N 1435.
[45] GRIMSON, W. (1985). Computational experiments with a feature-based stereo algorithm, IEEE Trans. Pattern Anal. Machine Intell., 76, 17-34 doi:10.1109/TPAMI.1985.4767615
[46] GRIMSON, W. (1981). From Images to Surfaces: A Computational Study of the Human Early Visual System, Cambridge. MA, MIT Press.
[47] GU, C. WU, L. (1990). Structural matching of multiresolution for stereo vision, In Proc. 10th Int. Conf. Pattern Recognition, Atlantic City, NJ. pp. 243-245.
[48] HANNAH, M. (1989). A system for digital stereo image matching, Photogrammetric Engineering and Remote Sensing, 55, 1765-1770.
[49] HARALICK, R. (1984). Digital step edges from zero-crossing of second directional derivatives, IEEE Trans. Pattern Anal. Machine 6, 58-68 doi:10.1109/TPAMI.1984.4767475
[50] HARALICK, R., WATSON, L. LAFFEY, T. (1983). The topographic primal sketch, Int. Journal Robotic Research, 2,50-72 doi:10.1177/027836498300200105
[51] HOFF, W. AHUJA, N. (1989). Surfaces from stereo: Integration feature matching, disparity estimation, and contour detection, IEEE Trans. Pattern Anal. Machine 11, 121-136 doi:10.1109/34.16709
[52] HORAUD, R. SKORDAS, T. (1989). Stereo correspondence through feature grouping and maximal cliques, IEEE Trans. Pattern Anal. Machine 11, 1168-1180 doi:10.1109/34.42855
[53] ITO, M. ISHII, A. (1986). Range and shape measurement using three-view stereo analysis, In Proc. Conf Comp. Vision and Pattern Recognition, Miami Beach, Florida, USA, pp. 9-14.
[54] JENKIN, M., JEPSON S. TSOTSOS, J. (1991). Technique for disparity measurement, CVGIP: Image Understanding, 53, 14-30 doi:10.1016/1049-9660(91)90002-7
[55] JONES, D. MALIK, J. (1992). A computational framework for determining stereo correspondence from a set of linear spatial filters, In Proc. European Conf. Comp. Vision, Santa Margherita Ligure, Italy. pp. 395-410.
[56] JORDAN, J. BOVIK, A. (1991). Dense stereo correspondence using color, Proc. SPIE, 1382, 111-122 doi:10.1117/12.43056
[57] JULESZ, B. (1960). Binocular depth perception of computer-generated patterns, Bell Systems Technical J., 39, 1125-1162.
[58] KAHN, P., KITCHEN, L. RISENMAN, E. (1990). A fast line finder for vision-guided robot navigation, IEEE Trans. Pattern Anal. Machine Intell., 12, 1098-1102 doi:10.1109/34.61710
[59] KANADE, T. OKUTOMI, M. (1991). A stereo matching algorithm with an adaptive window: theory and experiment, In Proc. IEEE Int. Conf. on Robotics and Automation, Sacramento, CA, USA, pp. 1088-1095.
[60] KIERKEGAARD, P. (1993). Stereo matching of curved segments, In Proc. 8th Scandinavian Conference on Image Analysis, Tromsø, Norway, vol. 1, pp. 457-464.
[61] KIM, D.H., CHOI, W.Y. PARK, R.-H. (1992). Stereo matching technique based on the theory of possibility, Pattern Recognition Letters. 13, 735-744.
[62] KIM, N. BOVIK, A. (1988). A contour-based stereo matching algorithm using disparity continuity, Pattern Recognition, 21,505-514 doi:10.1016/0031-3203(88)90009-X
[63] KIM, Y. AGGARWAL, J. (1987). Positioning 3D objects using stereo images, IEEE Journal of Robotics and Automation, 3, 361-373 doi:10.1109/JRA.1987.1087107
[64] KITTLER, J., CHRISTMAS, W. PETROU, M. (1993). Probabilistic relaxation for matching problems in computer vision, In Proc. 4th Int. Conf. on Computer Vision, Berlin, pp. 666-673.
[65] KROTKOV, E. (1989). Active Computer Vision by Cooperative Focus and Stereo, Springer Verlag.
[66] VAN LAARHOVEN, P. AARTS, E. (1987). Simulated Annealing: Theory and Applications, D. Riedel Publishing Co., Holland.
[67] LAINE, A. ROMAN, G. (1991). A parallel algorithm for incremental stereo matching on SIMD machines, IEEE Trans. on Robotics and Automation, 7, 123-134 doi:10.1109/70.68076
[68] LEE, J., CHO, S. HA, Y. (1992). Neural network modelling of new energy function for stereo matching, Proc. SPIE, 1608, 490-499 doi:10.1117/12.135114
[69] LEW, M., WONG, K. HUANG, T. (1992). Multi-scale stereo matching, In Proc. Int. Conf Pattern Recognition, vol. 1, Hague, The Netherlands, pp. 620-623.
[70] LIM, K. PRAGER, R. (1983). Using Markov Random Fields to integrate stereo modules, In Proc. Scandinavian Conference Image Analysis, Tromsø, Norway, pp. 435-440.
[71] LITTLE, J. GILLETT, W. (1990). Direct evidence for occlusion in stereo and motion, Image and Vision Computing, 8, 328-340 doi:10.1016/0262-8856(90)80009-I
[72] LIU, Y. HUANG, T.S. (1991). Determining straight line correspondence from intensity images, Pattern Recognition, 24, 489-504 doi:10.1016/0031-3203(91)90016-X
[73] LLOYD, S., HADDOW, E. BOYCE, J. (1987). A parallel binocular stereo algorithm utilizing dynamic programming and relaxation labelling, Comp. Vision, Graphics, Image Processing, 39, 202-225.
[74] LU, Y. JAIN, R. (1989). Behavior of edges in scale space, IEEE Trans. Pattern Arial. Machine Intell., 11, 337-356 doi:10.1109/34.19032
[75] MA, S., SI, S. CHEN, Z. (1992). Quadric curve-based stereo, In Proc. Int. Conf. Pan. Recognition, vol. 1, Hague, The Netherlands, pp. 1-4.
[76] MARAPANE, S. TRIVEDI, M. (1992). Multi-primitive hierarchical stereo system, In Proc. Int. Conf. Computer Vision and Pattern Recognition, Champaign, IL, USA, pp. 499-505.
[77] MARAPANE, S. TRIVEDI, M. (1989). Region-based stereo analysis for robotic applications, IEEE Trans. Systems, Man, and Cybernetics, 9, 1447-1464 doi:10.1109/21.44064
[78] MARCH, R. (1988). Computation of stereo disparity using regularization, Pattern Recognition Letters, 8, 181-187 doi:10.1016/0167-8655(88)90097-9
[79] MARR, D. POGGIO, T. (1976). Cooperative computation of stereo disparity, Science, 194, 283-287 doi:10.1126/science.968482
[80] MARR, D. POGGIO, T. (1979). A computational theory of human stereo vision, Proc. Royal Soc. London, 8204, 301-328 doi:10.1098/rspb.1979.0029
[81] MARR, D. HILDRETH, E. (1980). Theory of edge detection, Proc. Royal Soc. London, B207,187-217 doi:10.1098/rspb.1980.0020
[82] MARROQUIN, J., MITTER, S. POGGIO, T. (1987). Probabilistic solution of ill-posed problems in computational vision, Journal of the American Statistical Association, 82, 76-89 doi:10.2307/2289127
[83] MATTHIES, L. (1992). Passive stereo range imaging for semi-autonomous land navigation, Journal of Robotic Systems, 9, 787-816 doi:10.1002/rob.4620090607
[84] MAYHEW, J. FRISBY, J. (1981). Psychophysical and computation studies towards a theory of human stereopsis, Artif. Intell., 17, 349-385 doi:10.1016/0004-3702(81)90029-1
[85] McINTOSH, J. MUTCH, K. (1988). Matching straight lines, Cotnp. Vision, Graphics, Image Processing, 43, 386-408.
[86] McKEOWN, D. HSIEH, Y. (1992). Hierarchical waveform matching: a new feature-based stereo technique, In Proc. Int. Conf. Comp. Vision and Patt. Recognition, Champaign, IL, USA, pp. 513-519.
[87] MEDIONI, G. NEVATIA, R. (1985). Segment-based stereo matching, Comp. Vision, Graphics, Image Processing, 31, 2-18.
[88] MOHAN, R., MEDIONI, G. NEVATIA, R. (1989). Stereo error detection, correction, and evaluation, IEEE Trans. Pattern Anal. Machine Intell., 11, 113-120 doi:10.1109/34.16708
[89] MOHAN, R. NEVATIA, R. (1992). Perceptual organization for scene segmentation and description, IEE Trans. Pattern Anal. Machine Intell., 14,616-635 doi:10.1109/34.141553
[90] MORAVEC, H. (1977). Towards automatic visual obstacle avoidance, In Proc. 5th Int. Joint Conf. Artif. Intelligence, Massachusetts, pp. 584-.
[91] MOUSAVI, M. SCHALKOFF, R. (1991). Stereo vision: a neural network application to constraint satisfaction problem, Proc. SPIE, 1382, 228-239 doi:10.1117/12.25215
[92] NASRABADI, N. (1992). A stereo vision technique using curve segments and relaxation matching, IEEE Trans. Pattern Anal. Machine Intell., 14, 566-572 doi:10.1109/34.134060
[93] NASRABADI, N. CHOO, C. (1992). Hopfield network for stereo vision correspondence, IEEE Trans. on Neural Networks. 3, 5-13 doi:10.1109/72.105413
[94] NISHIHARA, H. POGGIO, T. (1984). Stereo vision for robotics, In Robotics Research (ed. M. Brady and R. Paul) (MIT Press), pp. 490-505.
[95] OHTA, Y. KANADE, T. (1985). Stereo by intra- and inter-scanline search, IEEE Trans. Pattern Anal. Machine Intell., 7,139-154 doi:10.1109/TPAMI.1985.4767639
[96] OHTA, Y., WATANABE, M. IKEDA, K. (1986). Improving depth map by right-angled trinocular stereo, In Proc. 8th Int. Conf. Pattern Recognition, Paris, pp. 519-521.
[97] OHTA, Y., YAMAMOTO, T. IKEDA, K. (1988). Collinear trinocular stereo using two-level dynamic programming, In Proc. 9th Int. Conf. Pattern. Recognition, Rome, pp. 658-662.
[98] OKUTOMI, M. KANADE, T. (1993). A multiple-baseline stereo, IEEE Trans. Pattern Anal. Machine Intell., 15, 353-363 doi:10.1109/34.206955
[99] OLSEN, S. (1990). Stereo correspondence by surface reconstruction, IEEE Trans. Pattern Anal. Machine Intell., 12, 309-315 doi:10.1109/34.49055
[100] OLSEN, S. (1992). Epipolar line estimation, In Proc. European Conf. Comp. Vision, Santa Margherita Ligure, Italy, pp. 307-311.
[101] PIETIKÄINEN. M. HARWOOD. D. (1986). Depth from three camera stereo, In Proc. Conf. Comp. Vision and Pattern Recognition, Miami Beach, Florida, pp. 2-8.
[102] POGGIO, T., TORRE, V. KOCH, C. (1985). Computation vision and regularization theory, Nature, 317, 314-319 doi:10.1038/317314a0
[103] POLLARD, S., MAYHEW, J. FRISBY, J. (1985). PMF: A stereo correspondence algorithm using a disparity gradient limit, Perception, 14, 449-470 doi:10.1068/p140449
[104] PONG, T., HARALICK, R. SHAPIRO, L. (1989). Matching topographic structures in stereo vision, Pattern Recognition Letters, 9, 127-36 doi:10.1016/0167-8655(89)90045-7
[105] PRAZDNY, K. (1985). Detection of binocular disparities, Biol. Cybernetics, 52, 93-99 doi:10.1007/BF00363999
[106] ROBERT, L. FAUGERAS, O. (1991). Curve-based stereo: figural continuity and curvature, In Proc. IEEE Conf. Comp. Vision and Patt. Recognition, Lahaina, Hawaii, pp. 57-62.
[107] ROSENFELD, A., HUMMEL, R. ZUCKER, S. (1976). Scene labelling by relaxation operation, IEEE Trans. Systems, Man, and Cybernetics, 6, 420-423 doi:10.1109/TSMC.1976.4309519
[108] SANDER, P., VINET, L., COHEN, L. GAGALOWICZ., A. (1989). Hierarchical region-based stereo matching, In Proc. 6th Scandinavian Conf. on Image Analysis, Oulu, Finland, vol. 1, pp. 71-78.
[109] SANGER, T. (1988). Stereo disparity computation using Gabor filters, Biological Cybernetics, 59, 405-418 doi:10.1007/BF00336114
[110] SHERMAN, D. PELEG, S. (1990). Stereo by incremental matching of contours, IEEE Trans. Pattern Anal. Machine Intell., 12, 1102-1106 doi:10.1109/34.61711
[111] SHIRAI, Y. (1992). 3D computer vision and applications, In Proc. Int. Conf. Pattern Recognition, vol. 1, Hague, The Netherlands, pp. 236-245.
[112] SINGER, M. (1987). Significant feature detection and matching in image pairs, In Proc. Int. Joint Conf. Artif. Intelligence, Milan, pp. 829-831.
[113] STEWART, C. (1992). On the derivation of geometric constraints in stereo, In Proc. Int. Conf. Comp. Vision and Patt. Recognition, Champaign. IL. USA. pp. 769-772.
[114] STEWART, C. DYER, C. (1990). Simulation of a connectionist stereo algorithm on a shared-memory multiprocessor, In Parallel Algorithms for Machine Intelligence and Vision (ed. V. Kumar), (Springer Verlag), pp. 341-359.
[115] STEWART, C. DYER,C. (1988). The trinocular general support algorithm: a three camera stereo algorithm for overcoming binocular matching errors, In Proc. 2nd Int. Conf. on Comp. Vision, Tampa, Florida, pp. 134-138.
[116] STEWART, C DYER, C. (1987). A connectionnist model for stereo vision, Proc. IEEE 1st Int. Conf. on Neural Networks, San Diego, USA, vol. 4, pp. 215-223.
[117] STEWART, C., MACCRONE, J. (1990). Experimental analysis of a number of stereo matching components using LMA, In Proc. 10th Int. Conf. Pattern Recognition, Atlantic City, NJ, pp. 254-258.
[118] SUGIMOTO, K., TAKAHASHI, H. TOMITA, F. (1988). Scene interpretation based on boundary representations of stereo images, In Proc. 9th Int. Conf. Pattern Recognition, Rome, pp. 155-159.
[119] TAKAHASHI, H. TOMITA, F. (1988). Planarity constraint in stereo matching, In Proc. 9th Int. Conf. Pattern Recognition, Rome, pp. 446-449.
[120] TERZOPOULOUS, D., WITKIN, A. KASS, M. (1987). Stereo matching as constraint optimization using scale continuation methods, Proc. SPIE, vol. 754, pp. 92-99.
[121] TOBORG, S., HWANG, K. (1991). Cooperative Vision Integration through data-parallel neural computations, IEEE Transactions on Computers, 40, 1368-1379 doi:10.1109/12.106222
[122] TRIENDL, E., KRIEGMAN, D. (1987). Stereo vision and navigation within buildings, In Proc. IEEE Int. Conf. Robotics and Automation, Raleigh, pp. 1725-1730.
[123] TSAI, R. (1986). An efficient and accurate camera calibration technique for 3D machine vision, In Proc. Conf on Comp. Vision and Pattern Recognition, Miami Beach, Florida, pp. 364-374.
[124] TSUJI, S., ZHENG, J. ASADA, M. (1986). Stereo vision of a mobile robot: world constraints for image matching and interpretation, In Proc. IEEE Int. Conf Robotics and Automation, San Francisco, California, pp. 1594-1599.
[125] VERRI, A. TORRE, V. (1986). Absolute depth estimates in stereopsis, Journal Opt. Soc. Amer., 3, 297-299 doi:10.1364/JOSAA.3.000297
[126] VLEESCHAUWER, D. (1993). An intensity-based, coarse-to-fine approach to reliably measure binocular disparity, CVGIP: Image understanding, 57, 204-218 doi:10.1006/ciun.1993.1013
[127] WANG, Y. PAVLIDIS, T. (1990). Optimal correspondence of string subsequences, IEEE Trans. Pattern Anal. Machine Intell., 12,1080-1087 doi:10.1109/34.61707
[128] WATANABE, M. OHTA, Y. (1990). Cooperative integration of multiple stereo algorithms, In Proc. 3rd Int. Conf. on Comp. Vision, Osaka, pp. 476-480.
[129] WENG, J., AHUJA, N. HUANG, S. (1992). Matching two perspective views, IEEE Trans. Pattern Anal. Machine Intell., 14, 806-825 doi:10.1109/34.149592
[130] WESTMAN, T. (1989). A combined region- and contour-based stereo vision system, In Proc. 6th Scandinavian Conf. on Image Analysis, Oulu, Finland, vol. 1, pp. 79-87.
[131] WILDES, R. (1991). Direct recovery of three-dimensional scene geometry from binocular stereo disparity, IEEE Trans. Pattern Anal. Machine Intell., 1.8: 761-774 doi:10.1109/34.85667
[132] WILLIAMS, L. ANANDAN, P. (1986). A coarse-to-fine control strategy for stereo and motion on a mesh-connected computer, In Proc. of IEEE Conf. on Comp. Vision Pattern Recognition, Miami Beach, Florida, pp. 219-226.
[133] XU, G., KONDO, H. TSUJI, S. (1989). A region-based stereo algorithm, In Proc. 11th Int. Joint Conf. Artif. Intelligence, Detroit, pp. 1661-1666.
[134] YASHIDA, M., KITAMURA, Y. KIMACHI, M. (1986). Trinocular vision: new approach for correspondence problem, In Proc. 8th Int. Conf. Pattern Recognition, Paris, pp. 1041-1044.
[135] YOKOYA, N. (1992). Surface reconstruction directly from binocular stereo images by multiscale multistage regularization, In Proc. Int. Conf. Patt. Recognition, vol. 1, Hague, The Netherlands, pp. 642-646.
[136] YUILLE, A. (1989). Energy functions for early vision and analog networks, Biological Cybernetics, 61, 115-123 doi:10.1007/BF00204595
[137] YUILLE, A., GEIGER, D. BULTHOFF, H. (1991). Stereo integration, mean field theory and psychophysics, Network, 2, 423-442.
[138] ZHOU, Y. CHELLAPPA, R. (1988). Neural network approach to stereo matching, Proc. SPIE, 974,243-250.


BibTeX:
@article{MIC-1995-2-1,
  title={{Approaches for Stereo Matching}},
  author={Ozanian, Takouhi},
  journal={Modeling, Identification and Control},
  volume={16},
  number={2},
  pages={65--94},
  year={1995},
  doi={10.4173/mic.1995.2.1},
  publisher={Norwegian Society of Automatic Control}
};

News

Oct 2018: MIC reaches 3000 DOI Forward Links. The last 1000 took 2 years and 5 months.


May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.