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This review focuses on the last decade’s development of the computational
stereopsis for recovering three-dimensional information. The main components of
the stereo analysis are exposed: image acquisition and camera modeling, feature
selection, feature matching and disparity interpretation. A brief survey is given of
the well known feature selection approaches and the estimation parameters for this
selection are mentioned. The difficulties in identifying correspondent locations in
the two images are explained. Methods as to how effectively to constrain the search
for correct solution of the correspondence problem are discussed, as are strategies
for the whole matching process. Reasons for the occurrence of matching errors are
considered. Some recently proposed approaches, employing new ideas in the
modeling of stereo matching in terms of energy minimization, are described.
Acknowledging the importance of computation time for real-time applications,
special attention is paid to parallelism as a way to achieve the required level of
performance. The development of trinocular stereo analysis as an alternative to the
conventional binocular one, is described. Finally a classification based on the test
images for verification of the stereo matching algorithms, is supplied.

1. Introduction

A major problem in computer vision systems is the recovery of geometric and
physical properties of visible three-dimensional (3D) surfaces from two-dimensional
(2D) intensity images, such as distance between the surfaces and the viewer, surface
orientation and material properties (texture, reflectance, colour). The processes that
provide such information about the 3D world are termed early vision (Poggio, Torre
and Koch 1985, Bertero, Poggio and Torre 1988). Examples are edge detection, stereo
matching, surface reconstruction, shape from shading and shape from texture. The
results of the early vision processing are used for higher level tasks such as object
recognition, object inspection, object manipulation, obstacle avoidance and navigation.
The loss of information during the imaging process that projects the 3D world into 2D
images often causes the solution of early vision problems to be non-unique (ambiguity),
non-existing (occlusion), or not continuously dependent on the data. As a consequence
early vision must rely on assumptions (constraints) about the physical world in order
to lift the ambiguity in the inverse problem.
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The aim of this paper is to present a survey on the last decade’s development of
stereo matching as a passive means for inferring 3D information. Itis to a large extent
complementary to existing surveys (Barnard and Fischler 1982, Dhond and Aggarwal
1989) because of the following:

e known feature selection approaches are grouped and assessed according to
certain criteria to elucidate the advantages and disadvantages of a particular
choice.

e general methods for efficiently constraining the search for a correct and unam-
biguous solution are discussed, as are strategies for the whole matching process.

e difficuities in the matching process are considered and some approaches for the
overcoming of possible errors are briefly mentioned.

e some new approaches for modeling the stereo correspondence problem in terms
of energy minimization functions are described.

e attention is drawn to parallelism as an important way to achieve the required level
of performance for real-time vision tasks, and therefore some parallel stereo
algorithms as well as implementations are considered.

e trinocular stereo vision is discussed as an ongoing research trend and a powerful
alternative to the conventional binocular stereo vision.

e classification of the test images for verifying the related algorithms is supplied.

Although all basic concepts and components of the stereo paradigm are briefly
explained, some terms are introduced without explicit definition—for these, the reader
is referred elsewhere (Barnard and Fischler 1982, Dhond and Aggarwal 1989). As for
any scientific field, covering all aspects of the research in stereo vision is practically
impossible (at least in a review like this). Reflecting the author’s bias, the focus is put
on the feature selection process and the matching process. The other components of
computational stereo, such as image acquisition and disparity interpretation (recon-
struction), in themselves constitute a wide research area, details of which go beyond
the scope of this paper. The omission of biological stereo systems was motivated by
similar reasons.

2. The computational stereo paradigm

Stereo vision has received a great deal of attention in the vision research area as
a passive means for inferring 3D information from images. The 3D information can be
computed by searching for corresponding items on a pair of images taken from slightly
different viewpoints. The common area appearing in both images of the stereo pair is
typically 40% to 80% of the total image area. The difference in position of
corresponding items in the two images causes relative displacements called disparities.
These disparities and the imaging geometry parameters enable depth to be calculated
by triangulation. Typically the stereo approach is characterised by the following
components:

e image acquisition and camera modeling—determining the level of resolution and
precision, and the parameters of the imaging geometry sufficient to support the
matching algorithm;

e feature selection—determining the primitive elements to be used as a basis for
the matching algorithm;

e correspondence—matching those elements in the two views that are projections
of the same element in the 3D world;

e disparity interpretation—converting the disparity in actual range information.
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These components are described in more detail in the next sections.

2.1. Image acquisition and camera modeling

Key parameters associated with image acquisition are the absolute positioning
accuracy and the relative alignment of the cameras (Barnard and Fischler 1982,
Nishihara and Poggio 1984).

In general, camera systems can be modeled as transformations of three-dimensional
coordinate systems. The transformations include translational, rotational, perspective,
and scaling components. The translational component of the transformation is specified
by the centre of projection (i.e. the optical centre of the camera) in the coordinate system.
The rotational component is specified by a pan angle, a tilt angle and a roll angle.
The distance from the origin of the camera coordinate system to the centre of projection
is termed the focal length f.

The number (two or more) of cameras along with their position and orientation, i.e.
the imaging geometry, are important factors for the determination of the disparity of
corresponding items in the stereo images, and also for the computation of the epipolar
lines (see the epipolar constraint in § 2.3.1).

Consider two laterally displaced cameras. There are two types of imaging
geometries according to the orientation of the two cameras. In the first type, the cameras
areoriented so that their optical axes converge at a certain point, called the fixation point.
The disparities between the image features in this geometry can be either positive or
negative. The sign of the disparity depends on the location of the physical surface point
with respect to the fixation point (Fig. 1). Given a particular image feature F in the first
image, its corresponding feature in the second image can lie to the left or to the right

disparity > 0
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Figure 1. Convergent camera geometry.

Figure 2. Conventional stereo geometry.
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of F. Thus, a search for correspondence needs to be performed on both sides of F.
Extra epipolar line computations become necessary in this case (Ayache 1991).

The second type of camera geometry is known as parallel axis geometry. The two
cameras have parallel optical axes. This geometry can be regarded as having its fixation
point at infinity. Here all the disparities must have the same sign, and hence, the search
for correspondence can be restricted to only one side. Parallel axis geometry yields less
overlap in both images of the scene compared to the convergent camera geometry, but
it is the most frequently used one because of the simple epipolar line computation (see
the epipolar constraint in § 2.3.1).

The geometry of a conventional stereo imaging system involves a pair of cameras
with parallel opiical axes and separated by a horizontal distance denoted as the stereo
baseline. The optical axes are perpendicular to the stereo baseline, and the image
scanlines are parallel to the baseline (Fig. 2).

The process of establishing the extrinsic (rotational and translational) and intrinsic
(perspective and scaling) parameters of a camera system is called camera calibration.
It gives the projection from 3D world coordinates to 2D image coordinates. This
information is needed for two reasons: first, to determine the imaging geometry, and
second, to reconstruct the 3D information from the 2D one after the matching process.
Moreover, in a recent study Stewart (1992) has shown the importance of considering
the image formation parameters such as focal length and baseline in the derivation of
the matching constraints.

In general, there are two approaches to the computing of the camera parameters.
One approach, called test-field calibration, assumes that 3D coordinates of some
reference points are given (Faugeras and Toskani 1986, Tsai 1986). The other approach,
called self-calibration, matches certain pairs of features in the two images (Faugeras,
Luong and Maybank 1992, Olsen 1992).

2.2. Feature selection

Animage array contains two pieces of information: light intensity changes and local
geometry (position). A good feature selection approach must incorporate explicit
representations of both pieces of information. The choice of matching features or
primitives is very important because it can significantly reduce the combinatorial
explosion of the search space associated with the stereo correspondence problem
(see §2.3.). Some estimation criteria for the selection of the primitives are
(Ayache 1991):

e compactness: a representation of an image must be as concise as possible to
reduce the complexity of the matching process;

e physical meaning: features should correspond to the projection into the image
of physical phenomena; in particular, they should be invariant to change of
viewpoint;

e stability: the representation should be insensitive to small photometric and
geometric distortions arising from the stereo imaging;

e distinguishability: features should possess properties permitting discrimination
amongst them to make the matching process easy; such properties can be
geometric, intensity-based, or structure-based,;

e precision: since the quality of localization of physical objects is dependent on
the position of visual features the latter should be computable with precision;
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e density: matching primitives should be sufficiently dense to represent all
interesting surfaces in a scene;

e case of computation: computational cost is especially important for real-time
applications.

Some of the mentioned estimation parameters are mutually competing. For instance,
very low-level features (features containing mainly intensity information) are dense but
unstable and increase the complexity of the matching process. On the other hand,
high-level features (features with rich description) are sparse but can be easily
distinguished.

According to the choice of primitives the stereo matching algorithms can be divided
into:

e intensity-based (area based) algorithms—the primitives produce a description at
each pixel location, as for example, intensity values around a point;

o feature-based algorithms—more abstract, sparsely located features are extracted
before the matching process.

A brief survey of the well known feature selection approaches is given below.

2.2.1. Intensity-based approaches

Pixel-based primitives can produce dense disparity measurements but are sensitive
to distortions (illumination and contrast), and hence are not stable. They are easily
measurable but their distinguishability is poor, especially in textureless or repetitive
environments, or where depth discontinuities occur. Therefore, intensity-based
algorithms usually suffer from slowness and ambiguous matches. However, taking
advantage of directly generating dense disparity measurements, these algorithms have
been successfully applied for analysis of aerial terrain images where the surface varies
smoothly.

Recently suggested intensity-based methods try to overcome some of the above
mentioned disadvantages (Barnard 1989, Fua 1993, Hannah 1989, Jones and Malik
1992, Jordan and Bovik 1991, Kanade and Okutomi 1991, Lee, Cho and Ha 1992,
Maitthies 1992, Okutomi and Kanade 1993, Sanger 1988, Vleeschauwer 1993.
For example, Fua (1993) makes an attempt to preserve discontinuities. As primitives
Jones and Malik (1992) use outputs of linear spatial filters tuned to a range of
orientations and scales to make the description richer. Jordan and Bovik (1991)
investigate the use of chromatic (colour) information. Kanade and Okutomi
(1991) adaptively select neighbourhoods at each pixel position to obtain dense
descriptions. Matthies (1992) presents stochastic models. Okutomi and Kanade (1993)
utilize multiple baseline stereo pairs. Jenkin (1991) and Sanger (1988) use local phase
difference between bandpass versions of the two images.

Typically, intensity-based algorithms perform some kind of correlation as a
matching strategy (see § 2.3.2). Other algorithms use optimization (see § 3).

2.2.2. Feature-based approaches

Feature-based approaches have the advantage that features are less sensitive to noise
and photometric distortions, they are fewer and more easily distinguishable compared
to pixel intensity descriptions, and can be more precisely positioned. However, matches
are sparse and interpolation is required, as well as some methods for modeling occlusion
and side effects from the feature extraction process (see §2.3.3.). Moreover,
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feature-based matching requires the existence of a sufficient number of features, which
is why it is mostly suited for application in highly structured environments such as
navigation indoors (Triendl and Kriegman 1987, Tsuji, Zheng and Asada 1986).

Many different features have been used as a basis for disparity measurements.

Moravec (1977) introduced points in an image with high variance in all directions,
and called them points of interest. These have been used lately by others (Nasrabadi
and Choo 1992). The points of interest are places in an image that can be matched with
relatively high confidence to corresponding points in the second image.

Since edges (large local intensity changes in an image) are more closely related to
the physical properties of a scene, they have been used increasingly as matching
primitives. A great number of edge operators have been proposed for computing the
orientation (aligned with the direction of maximal gray-level change) and magnitude
of an edge (quality of this change) (Ballard and Brown 1982, Canny 1985, Deriche 1987,
Haralick 1984). A very popular one is the Marr—Hildreth edge detector (Marr and
Hildreth 1980). Edges are extracted as zero-crossings of the convolved image with a
mask approximating the Laplacian of a Gaussian (LoG). This edge detector has been
widely used in stereo vision (Allen 1987, Braunegg 1990, Chakrapani, Khokhar and
Prasanna 1992, Grimson 1981, Grimson 1985, Gu and Wu 1990, Hoff and Ahuja 1989,
Kim and Aggarwal 1987, Lloyd, Haddow and Boyce 1987, Nasrabadi 1992, Olsen
1990, Pollard, Mayhew and Frisby 1985, Shirai 1992, Stewart and Dyer 1990). Among
the properties that make it so popular are reduction of the effect of noise in the image,
no need for thinning or thresholding procedures, easy interpolation of edges to subpixel
precision, and separability of the convolution which simplifies the computation. The
LoG operator is the best one for scale experiments. However, Lu and Jain (1989) have
reported that neighbouring edges influence the response of LoG and can cause
dislocation of edges, false edges, and merging of edges in the scale space.

Linear edge segments are higher level features that can capture more information
from the intensity image compared to point features. In addition to geometrical
description such as location, orientation and length, an edge line extractor can provide
some of the attributes associated with the observed intensity images such as strength,
contrast, width, straightness, and junctions, provided that the pixels around an edge are
also analysed. Such is the line extraction algorithm proposed by Burns, Allen, Hanson
and Riseman (1986) and its improved modifications (Kahn, Kitchen and Riseman 1990,
Liu and Huang 1991, McIntosh and Mutch 1988). Further, line features are easier to
extract from noisy images than are point features. The position and orientation of a line
is easier to determine with a subpixel accuracy than the coordinates of a point. Also,
the figural continuity constraint (see § 2.3.1.) is naturally incorporated. A disadvantage
is that one needs to cope with problems such as fragmentation and fragility (see § 2.3.3.).
Nevertheless, linear edge segments have quite often been used as features in stereo
systems (Ayache 1991, Butler 1992, Chapron and Cocquerez 1992, Fornland, Jones,
Matas, Kittler 1993, Horaud and Skordas 1989, Kim, Choi and Park 1992, Krotkov
1989, Liu and Huang 1991, Medioni and Nevatia 1985, Maravall and Fernandez 1992,
Mclntosh and Mutch 1988).

Kierkegaard (1993) states that curves rather than lines should form the basis for an
edge-based stereo vision system, since information about curvature and smoothness can
be used additionally for the feature description. Curve primitives have been used also
by Brint and Brady (1990), Deriche and Faugeras (1990), Ma, Si and Chen (1992),
Nasrabadi (1992), and Robert and Faugeras (1991).

Closed edge segments or contours represent the next level of abstraction. Kim and
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Bovik (1988) use specific high information points (external points) along a contour to
guide the matches. Sherman and Peleg (1990) also use contours as matching primitives.

While the edge-based feature extraction methods rely on the property of
dissimilarity in images, the region-based ones rely on the property of similarity. The
higher semantic content of a region makes it a good candidate for a matching primitive.
Regions can be described by mean grey level, area, perimeter, principal axes,
width-to-height (aspect) ratio, centroid, minimum enclosing rectangle, and holes.
Region-based primitives are more stable and tolerant to noise then edge-based
primitives. There are typically fewer regions in an image than edges or lines, and thus,
fewer candidates to be evaluated by matching. Another advantage of using regions in
stereo matching is that they make some of the matching constraints implicit or easier
to incorporate. Moreover, the effects of occlusion are less severe when applied to
regions than to points or segments. A great disadvantage, however, is the lack of
capability to generate an accurate disparity map of fine resolution. Gagalowicz and
Vinet (1989), Marapane and Trivedi (1989), Sander, Vinet, Cohen and Gagalowicz
(1989), and Xu, Kondo and Tsuji (1989) have proposed region-based stereo matching
algorithms.

Mohan and Nevatia (1992) concentrate on the geometrical relationships in images.
Collated features are organized as description hierarchies representing much of the
structural information in an image by grouping edges recursively. The grouping is based
on relationships of continuity, proximity, symmetry and closure. The feature hierarchy
is organized as follows: curves (grouped edges on continuity and proximity), points
(terminations and junctions of curves), contours (ordered set of continuous curves),
symmetries (pairs of mutually symmetric curves), and ribbons (regions enclosed by the
symmetric curves).

It is noticeable that the higher the level of description the better the matching
accuracy since high-level descriptions are likely to be invariant to photometric and
geometric distortions and noise. Yet, high-level feature matching cannot generate fine
disparity to assist surface interpretation in sufficient detail. Sander, Vinet, Cohen and
Gagalowicz (1989) and Marapane and Trivedi (1992) come to the conclusion that to
a certain extent, low-level features and high-level features are complementary and
should be utilized together in order to facilitate accurate, robust and efficient stereo
analysis. Marapane and Trivedi (1992) present a multiprimitive stereo approach that
embeds a hierarchy of primitives, such as regions, edge segments, and edge pixels
(edgels) in the matching process and attempts to overcome the limitations of purely
edge-based or region-based approaches. Cohran and Medioni (1992) and Lim and
Prager (1993) integrate intensity-based and feature-based matching in their research.
Weng, Ahuja and Huang (1992) incorporate intensity, edgeness and cornerness
attributes in their matching algorithm. Westman (1989) combines region- and
contour-based approaches.

2.3. Correspondence

The stereo correspondence problem is referred to as the most important stage in the
process of stereopsis. A feature P in one image and a feature 0 in a second image are
said to be corresponding or homologous, if P and Q are projections of the same physical
entity. All pairs of corresponding features from two images of the same scene have to
be matched.

The task of identifying corresponding locations in the two images is a difficult one.
For an image of size N X N pixels, each pixel event in one image potentially has N2
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Figure 3. The false target problem.

possible matches in the other image. Consider an example (Fig. 3) which contains three
elements in each of the left and right images. Each element in the one image is similar
to any of the three in the other image. So there are nine possible matches, with only
one being correct. The fact that a feature in one image may match equally well with
a number of features in the other image is referred to as the false rarget problem
(Grimson 1981, Marr and Poggio 1979). It arises from photometric differences between
the two views (illumination or contrast), structured properties of the scene (repetitions),
occlusion, blandness, or distortions in the feature extraction process (fragmentation and
fragility of edge segments). The difficulties in the matching stage are described in detail
in §2.3.3.

When searching the space of possible correspondences, two interconnected issues
have to be considered. The first one restricts the set of possible alternatives. The choice
of appropriate features to be matched is one possibility. The more distinguishable those
features are, the fewer the candidates to be evaluated by matching. In this context the
above requirement is better met by high-level features, whereas local intensity values
around a point are less appropriate. Another possibility for restricting the set of possible
alternatives is to apply certain constraints to the number of possible matches, that used
together with relevant matching strategies, can eliminate false matches and verify the
match results. The known relationship between the two images imposes metric
constraints on the relationship between the two projections of a space feature. In
addition, certain descriptive properties of the scene are quasi invariant under perspective
projection and therefore they do not change too much with the viewing position. In the
next section some of the most popular constraints are described.

The second issue for finding the correct solution of the correspondence problem
concerns the strategies for efficiently searching the space of alternatives. A matching
strategy is the controlling rule for the whole matching process and the way the
underlying constraints are incorporated into an algorithm to reduce the matching
combinatorics. In general, the matching process consists of two stages: local matching
and global matching. In the local matching stage, for every feature in the first image,
an attempt is made to find a set of candidate match features in the second image that
satisfy certain geometrical constraints and have similar local feature properties. In the
global matching stage a scheme for imposing global consistency among the local
matches is used to disambiguate multiple local match-feature candidates. In §2.3.2 a
brief survey of the most popular matching stategies is given.
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2.3.1. Binocular stereo matching constraints

The matching process employs constraints to help select the valid matches among
the candidates. Typically, the selection is made by supporting some matches and
possibly inhibiting others. The constraints are derived from assumptions about the scene
or about the imaging process. They are often implemented as relations between pairs
of candidate matches. However, as will be shown later, it is possible that valid matches
are not covered by the assumptions of a constraint. In general, when mismatches occur
there is no way to decide whether this is due to violation (inapplicability) of the imposed
constraints (Stewart and Dyer 1987).

Epipolar constraint

The dimensionality of the search space can be reduced from two dimensions to one
dimension by observing that for any point in one of the images, its potentially matching
points in the other image must lie along a known line: this is the epipolar constraint,
a geometric property available whenever the stereo sensor is properly calibrated.
Suppose that a point P in the scene is projected onto the left image. Let the two optical
centres be C, and C; (Fig. 4). The line PC, and the baseline (the line passing through
the focal points) determine a unique epipolar plane. Then the projection of P on the right
image must lie on the intersection of the epipolar plane with the right image plane. The
intersection of the epipolar plane with an image plane is called the epipolar line.

A very special situation arises where the cameras are registered so that the epipolar
lines correspond to the scanlines in the images (conventional camera modeling). Under
such conditions the computation of the epipolar lines is simple. Most of the presented
stereo matching algorithms use such camera registration. Should this not be the case,
it is possible to arrange such a configuration by a transformation of the images, called
rectification (Ayache 1991, Ayache and Hansen 1988).

Consider that epipolar lines correspond to the scanlines in the images. A liberal
interpretation of the epipolar constraint states that a point on a line y can be matched
only to points on lines y’ such that y —v=y' <y + v for some constant v (Grimson
1985). When segments or regions are used as matching features, the epipolar constraint
can be formulated as follows. A pair of features (S, S’) satisfies the epipolar constraint
if and only if the epipolar plane passing through the centroid of § intersects S'.
A symmetric definition applies to the pair (§'S) (Ayache 1991). This liberal
interpretation of the epipolar constraint is more appropriate, since accurate camera
calibration is difficult to achieve.

Figure 4. The epipolar constraint.
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Geometric similarity constraint (compatibility constraint)

Some of the description properties of feature primitives are quasi invariant under
perspective projection. Therefore, they can be used for a similarity measurement
between features from two images in the local matching stage. For example, such
properties can be the sign of zero-crossing, edge orientation, magnitude and contrast,
area and perimeter of a region. For intensity-based matching the assumption is that
matched pixels have similar intensities or similar values for certain simple functions
of intensity (photometric constraint).

It should be noted that such similarity measurements can be made assuming
that there are no photometric differences in the two views nor incorrect camera
registration. Unfortunately, in general, this is not necessarily the case.

Uniqueness constraint

The uniqueness constraint was formulated by Marr and Poggio (1979) and it states
that there is at most one valid match for each primitive, i.e. at most, one disparity value
may be assigned to each feature from either image. This condition relies on the
assumption that a feature corresponds to something that has a unique physical position.
An exception can occur when two features lie along a single optical line for one of the
cameras, but are separately visible from the other camera (Fig. 5). Assuming that
the surfaces in the scene are opaque, only the physical point closest to the camera can
be considered (point P, in Fig. 5). However, situations can be pointed out in which the
spatial structure of the scene cannot be correctly recovered by imposing the uniqueness
constraint (Fig. 6) (Ayache 1991).

Figure 6. Violation of the uniqueness constraint. The pair of points (P3, P;) is aligned with the
optical centre of the first camera whereas the pair (P,, P,) is aligned with the optical centre
of the second camera.
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Continuity constraints

The surface continuity constraint assumes that the physical world is composed of
surfaces that are continuous almost everywhere. This suggests that disparities ought to
vary smoothly, that is, the disparity of a point will be similar to the disparity of nearby
points. This assumption does not hold true near object boundaries. The surface
continuity constraint was formulated by Marr and Poggio (1979). They note that the
greater the range of disparity over which a match is sought, the greater the number of
false targets.

The gradient of the disparity is closely related to the smoothness of the scene
surfaces. A disparity gradient constraint was formulated by Pollard et al. (1985). It
defines support between nearby pairs of matches. Suppose that m; and m; are two
candidate matches with disparities d; and d; respectively. Then the matches support
each other if

lh—dl _

D(m 1 mz) o
where D(m,,m;) < K is the distance between the two matches, for constant K. More
distant matches can have a greater disparity difference. Another close formulation is
the coherence principle of Prazdny (1985), which also focuses on the similarity of
disparity of nearby matches as a possible way for mutual support based on the
assumption that objects occupy a well-defined 3D volume.

The figural continuity constraint is based on the assumption that contours appear
similarly in the two images. Thus, disparity values can be restricted along edges in an
image. This constraint was proposed by Mayhew and Frisby (1981). It is weaker than
the surface continuity constraint and it overcomes the problems near object boundaries.
In the cases when edge segments are considered as matching features, the figural
continuity constraint is implicitly applied.

1

Ordering constraint

Since the image structure is largely preserved in both images, the relative position
of two features should not differ much from the relative position of the corresponding
features in the other image. The ordering constraint assumes the preservation of the
order of matched points along corresponding epipolar lines unless the scene contains
transparent or narrow occluding (thin) objects (Fig. 7).

General position constraint

The general position constraint relates to the observation that certain events occur
quite infrequently in a statistical sense. It has been utilized by Arnold and Binford
(1980). Horaud and Skordas (1989) extrapolate the results obtained by Arnold and
Binford. Consider a camera geometry with optical centres behind the images planes.
Let P be a scene point, and p and p’ be the projections of P onto the left and right image
planes. P lies along the line Op (Fig. 8). As P moves along this line, p’ must lie

1 |2 3' |a PEILLE FE IR

Figure 7. Violation of the ordering constraint.
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Figure 8. A top view of the epipolar plane defined by p, O and O'.

somewhere in between a’ and g', where a’ lies onto the left border of the right image
and 0'q’ is parallel to Op. Hence, the segment a’'g’ can be regarded as the locus of
possible positions of p’. When p is close to a, the segment a’q’ has its shortest length
and when p is close to b, the segment a'q’ is as long as a’b’. This suggests that there
are less potential matches for left image points that are close to the left border than for
points that are close to the right border. This is equally true for right image points close
to the right border.

2.3.2. Matching strategies

Correlation

Area-based stereo techniques mostly use correlation as a matching strategy.
Intensity patches in one image are chosen and then a search is performed for the best
matching location in the other image, typically using normalized cross-correlation as
a measure of similarity, or mean-squared difference as a measure of dissimilarity
(Fua 1993). Hence, correlation-based algorithms rely on the fact that the same texture
can be found at corresponding points in the two images of a stereo pair. On the one hand,
correlation is capable of providing dense disparity determination. On the other hand,
it requires that the images have sufficient local texture at each point without repetitions
or discontinuities. Furthermore, it is sensitive to noise, contrast, or lighting changes.
So, the following problems can be encountered, as pointed out by Barnard (1989):

e A patch must be large enough to contain the information necessary to identify
the corresponding patch unambiguously.

e Atthe same time, a patch must be small compared to the variation of the disparity.

e Correlation is unreliable in areas with uniform or slowly varying intensity.

Recently, a lot of trials have aimed to overcome some of these problems (Fua 1993,
Hannah 1989, Jones and Malik 1992, Kanade and Okutomi 1991, Okutomi and Kanade
1993). Fua (1993) performs bidirectional correlation followed by interpolation to
propagate across textureless areas preserving discontinuities. Jones and Malik (1992)
suggest the use of filters at different scales and orientations to provide a rich description
of an image patch. They introduce the notion of a visibility map to cope with occlusions,
and the notion of a scale map to provide adaptive scale selection. Kanade and Okutomi
(1991) present an algorithm that controls the size and shape of a patch (window) for
the correlation process by applying a statistical model representing the uncertainty of
disparity of points over the patch. Okutomi and Kanade (1993) provide a new approach
for the removal of false matches that integrates the evidence for a final decision from
multiple image pairs acquired with different baselines. The proposed method
accumulates the measures of matching (sum of squared differences) from the different
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pairsinto a single evaluation function that has a unique minimum at the correct matching
position.

Correlation can be based not only on intensity patches but on features as well
(Allen 1987, Singer 1987, Triendl and Kriegman 1987).

Relaxation

Relaxation labelling is a technique (proposed by Rosenfeld ef ai. (1976)) developed
to deal with uncertainty in sensory data interpretation systems. It uses contextual
information as an aid in classifying a set of interdependent objects by allowing
interactions among the possible classifications of related objects. In the stereo paradigm
the problem involves assigning unique labels (or matches) to a set of features in an image
from a given list of possible matches. For each candidate pair of matches a matching
probability is updated iteratively depending on the matching probabilities of
neighbouring features. Therefore, stronger neighbouring matches improve the chances
of weaker matches in a globally consistent manner. Marr and Poggio (1976) are pioneers
in the use of relaxation for stereo vision. They associate weights to each match. At each
iteration, and for each match, an *inhibitory’ process reduces the weights of conflicting
matches (those which violate the uniqueness constraint), and an ‘excitatory’ process
increases the weights of matches with similar disparities (the continuity constraint).
Relaxation has also been used by Chakrapani, Khokhar and Prasanna (1992), Kim and
Aggarwal (1987), Kittler, Christmas and Petrou (1993), Laine and Roman (1991),
Lloyd et al. (1987), Medioni and Nevatia (1985), Nasrabadi (1992), Sherman and Peleg
(1990), and Stewart and Dyer (1990). A big advantage of this technique is that it is well
suited for parallel implementations.

Multiresolution

Multiresolution specifies relations between pairs of matches at adjacent resolutions.
The traditional use of multiresolution matches features in a hierarchical, coarse-io-fine
manner. That is, matching occurs at the coarsest resolution first, where the features are
sparser. The results of the matches are then used to restrict the range of disparities at
the next finer resolution prior to matching at that level. This continues to the finest
resolution. Since this strategy can reduce significantly the computation many
researchers have used it in stereo matching (Barnard 1989, Braunegg 1990, Cochran
and Medioni 1992, Chen and Medioni 1990, Grimson 1981, Grimson 1985, Hoff and
Ahuja 1989, Lew, Wong and Huang 1992, Marr and Poggio 1979, McKeown and Hsieh
1992, Olsen 1990, Terzopoulos, Witkin and Kass 1987, Vleeschauer 1993, Weng,
Ahuja and Huang 1992). However, this form of multiresolution can cause certain errors
in the matching. The main source of errors arises when false matches are made at coarse
resolutions (for example, in complex scenes, edges detected from low level filters do
not usually correspond to any true edges (Lu and Jain 1989). These errors can restrict
the possible disparities for nearby edges at finer resolutions to a range that does not
include the correct disparities. Thus, it is extremely difficult for finer resolution
matching to recover from errors made in coarse resolution matching. Stewart and
MacCrone (1990) propose another form of multiresolution that avoids this problem. All
resolutions are considered simultaneously and cross-channel consistency between
nearby pairs of matches at different resolutions are used as a basis for support. In
addition, cross-channel consistency multiresolution allows parallel implementation.
Lew, Wong and Huang (1992) also suggest an algorithm that works at multiple scales
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simultaneously. They introduce an error function defined as the summation of the scalar
error over every scale and look for a match with the minimum error.

Dynamic programming

Dynamic programming is a non-linear optimization technique based on Bellman’s
principle of optimality (Bellman 1962), which states that the optimal path between two
given points is also the optimum between any two points lying on that path. This means
that the global optimization of a multistage problem can be split into series of single
stage optimization problems. It has the advantage of reducing the number of searches
for an N stage optimization problem with L possible values from O(L™) to O(NL?).
Furthermore, it allows parallel implementations. This matching strategy implies the use
of the ordering constraint. Dynamic programming technique has been employed lately
by Belhumeur (1993), Boyer et al. (1990), Geiger, Ladendorf and Yuille (1992),
Lloyd et al. (1987), Matthies (1992), Ohta and Kanade (1985), Ohta er al. (1988), and
Wang and Pavlidis (1990).

For example, Ohta and Kanade (1985) decompose the correspondence search into
two: intra-scanline search and infer-scanline search. Scanline intervals between edge
points are matched in the intra-scanline search. A path-finding problem in a 2D search
space is formulated, in which vertical and horizontal lines are the left and the right
scanlines respectively. Intersections of these lines are referred to as nodes. With each
partial path a cost function is defined, based on variances of gray-level intensities of
the scanline intervals being matched. Edges are numbered from left to right on each
scanline (the ordering constraint is applied). Suppose that there are M edges in the
considered left scanline and N edges in the corresponding right scanline. Then the
solution to the intra-scanline search can be represented as a path involving a sequence
of straight lines from node (0,0) to node (M, N) with the optimum cost. This cost is
computed recursively adding the cost of each new primitive path to the already existing
partial optimal path. The inter-scanline search is performed in order to provide
consistency constraints across the 2D search planes using edge connectivity (figural
continuity). A 3D search space is formed. A 3D node is represented as collection of
the 2D nodes connected across scanlines. An optimal path in the 3D search space is
obtained in a manner similar to that in the intra-scanline search.

Sub-graph isomorphism

A description of each image in the form of a graph is built, which makes explicit
certain characteristic groupings of primitives on a relational basis. Next, a correspon-
dence graph is built where the nodes represent possible matches, and links are
compatibilities between these matches. A search for maximal-clique (completely
connected subgraph) is performed. Horaud and Skordas (1989) have proposed such an
algorithm. Linear edge segments are extracted from both the left and the right images.
Each segment is characterized by its position, orientation, length, and contrast in the
image, as well as its relationships with the nearby segments. The relationships are
left-of, right-of, collinear-with and same-junction-as. Thus, a relational graph is built
from each image. For each segment in one image a set of potential assignments in the
other image is determined employing the epipolar constraint, the position constraint,
and the geometric similarity constraint. These assignments are represented as nodes in
a correspondence graph. For each node a benefit is computed that sums up the
differences in contrast, length, orientation, and number of relations. Arcs in this graph
represent compatible assignments established on the basis of segment relationships.
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Compatibilities and incompatibilities between nodes are taken into account. To
overcome the difficulty with missing relations, a compatibility propagation technique
is suggested. Sets of mutually compatible nodes are found, looking for maximal clique.
Each maximal clique is evaluated and the best one with respect to this evaluation is
selected as solution.

Fornland et al. (1993) and Kierkegaard (1993) also apply this technique in their
stereo systems.

Structural maiching

Boyer and Kak (1988) assert that a structural description of each image should be
the first goal in the stereo matching process and develop a theory of inexact matching
for such structures. The structural description is given by a set of primitives and a set
of relations over the primitives. Let DL = (P, R) be the structural description of the left
image and DR = (Q,S) be the structural description of the right image. The stereo
matching problem is considered in the terms of a consistent labelling problem. The set
P forms the object set, and the set Q forms the label set. Two sources of information
are used in the labelling process: knowledge about the attributes of each label (J), and
knowledge about relationships between different labels (R). I consists of a set of
conditional probabilities of an attribute taking on a specific value in the right image
given its value in the left image and therefore, I reflects the primitive attribute distortion
process between the two images. R consists of a set of conditional probabilities, each
item in the set being the probability that a relational parameter will take on a particular
value in the right image for its given value in the left image. So R reflects the changes
in the values of relational constraint parameters. Given the information in 3 and R, an
optimal probability measurement (OPM) is defined with an J-term and an ‘R-term.
assuming that the information in 3 is independent of the information in %R.
An information-theoretic interprimitive distance measure DIST,(P, Q) is formulated to
represent the dissimilarity between the sets of primitives P and Q under a specific
mapping h:P — Q, and is related to the 3-term in the OPM definition. A relational
inconsistency measure INCx(R, S) is formulated to measure the distortion of relational
parameters between the set of primitives, and is related to the R-term in the OPM
definition. The solution of the consistent labelling problem is then formulated as

MIN(DIST(P, Q) + INCK(R, 5)).

The structural description of each image is derived from skeletons of objects in the
scene. The edges of the skeletons form a set of primitives. The following relations over
the set of primitives are chosen: pairwise-orientation (the mean orientation of the
straight line joining the centroids of a pair of skeletal edges), distance (length of
the straight line joining the two centroids), and end-distance (length of the line segment
joining the closest pair of end points between two edges).

Another structural matching algorithm was presented by Pong, Haralick and
Shapiro (1989), Topographic structures such as ridge, valley, hill-side, saddle and flat
are extracted by the topographic primal sketch of Haralick, Watson and Laffey (1983)
and matched. Gu and Wu (1990) also suggest the use of structural matching.

Prediction and verification

The matching proceeds by recursive prediction and verification. Reliable matches
are hypothesized between feature primitives using epipolar constraint and geometric
similiarity constraints. Then verification is performed for each hypothesis by recursive
propagation to its neighbourhood by assigning new matches between neighbouring
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features using uniqueness and continuity constraint. The number of propagated matches
is then used to discriminate between ambiguous matches and to validate final matches.
Ayache (1991) and Krotkov (1989) also use such a strategy for stereo matching.

Bidirectional matching

This strategy is usually combined with another one. First matching is performed
from the left image to the right image and then vice versa: from the right image to the
left image and features that are not matched in both directions are not taken into
consideration. Although such a strategy can sometimes eliminate correctly matched
pairs it has been applied by Cochran and Medioni (1992), Fua (1993), Hannah (1989),
Little and Gillett (1990), Liu and Huang (1991), and Pong, Haralick and Shapiro (1989).

2.3.3. Difficulties in matching

Stereo algorithms are no better than their ability to extract dense and accurate range
information. Unfortunately, there are some difficulties in reliably finding the correct
matches during the correspondence search.

False matches can occur due to

e photometric differences between two views, i.e. illumination or contrast;

e structural properties of the scene, such as periodic texture or lack of texture; a
special case related to the practical implementation of edge-based algorithms is
the matching of edges with almost the same orientation as the orientation of
the epipolar lines;

e incorrect camera registration: small inaccuracies in measuring camera
parameters can lead to large errors in computed depth;

o discrete nature of a digital image;

® noise;

Missing matches can arise due to

e occlusion: a point on a surface becomes invisible when the viewing position goes
behind a surface or when the line of sight is interfered with by other objects
(Fig. 9);

e part of the scene not being in the field of view of the other camera;

e blandness: a primitive is too weak in one of the images and, therefore, is discarded
as noise in the feature extraction process.

A lot of stereo systems take into account occlusion effects (Belhumeur 1992,
Belhumeur 1993, Dhond and Aggarwal 1992, Geiger, Ladendorf and Yuille 1992, Jones
and Malik 1992, Little and Gillett 1990, Lloyd et al. 1987, Marroquin, Mitter and Poggio
1987, Ohta and Kanade 1985, Ohta et al. 1988, Olsen 1990, Sugimoto eral. 1988, Weng,
Ahuja and Huang 1992, Yokoya 1992). For instance, the problem of modeling occlusion
is addressed in the work of Geiger, Landendorf and Yuille (1992) by introducing a
constraint that relates discontinuities in one image with occlusions in the other.

Some difficulties in the matching process can also be caused by distortions from
the feature extracting stage. For example, by extracting linear edge segments, the
following distortions can arise (Takahashi and Tomita 1988):

e fragmentation: a segment in one image appears as two segments in the second
image (Fig. 10);
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Figure 9. Occlusion.

/S

Figure 10. Fragmentation.

s

Figure 11. Fragile segmentation.

e fragile segmentation: a segment in one image appears broken in the second image
(Fig. 11);

Some algorithms that cope with distortions from the linear edge segmentation process
are those by Ayache (1991), Horaud and Skordas (1989), Medioni and Nevatia (1985),
Ohta and Kanade (1985), and Takahashi and Tomita (1988). For example, Medioni and
Nevatia (1985) overcome possible fragmentation of segments by allowing a segment
in one image to be matched to two (or more) segments in the other image demanding
that the candidates should not overlap each other.

Mohan et al. (1989) present a post processor to any edgel-based (features are edge
pixels) stereo matching algorithm which, given a linear segment, first rejects the
disparities violating figural continuity and then computes a linear function that describes
the disparity change along that segment. This function is then used to correct disparity
errors which can arise due to the fact that information along an epipolar line may not
be sufficient for matching, or due to distortion of the real epipolar line.

2.4. Disparity interpretation

After the correct point matches have already been identified, the next step is to
recover the 3D information. Assuming conventional parallel axis geometry, this can be
done by a simple geometrical method known as triangulation. The disparity value d for
each matched pair of points Pr(x1, yr) and Pr(xg, yg) is

d=x,:,'-xg,
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and the 3D coordinates of the imaged point P(X, ¥, Z) with respect to the left camera
are

bx, by, b
PX.Y,Z) (d 14
where b is the baseline and f'is the focal length of the camera.

Usually, some uncertainty considerations are needed. Verri and Torre (1986) have
analysed the error in depth estimates. They separate the errors into two components.
The first, precision of the setup geometry, affects absolute depth estimates. The second,
image plane orientation and focal length, affects relative depth estimates. Blostein and
Huang (1987) perform an analysis of the position error from image plane quantization.
In general, there are several ways to improve depth measurements, each involving some
additional computational cost as pointed out by Barnard and Fischler (1982), and these
are subpixel estimation, increased stereo baseline, and statistical averaging over several
views. The depth computation process of nonparallel stereo systems requires a more
general approach (Grimson 1981, Krotkov 1989).

In most cases, the resulting depth points are sparse, whereas depth must be computed
at every point in the scene. The most popular approach to interpreting stereo disparity
is surface fitting. In its simplest form, the idea behind this approach is to interpolate
(or approximate) the sparse depth values with a smooth surface. The surface fitting
approach has two forms. The first one is minimization of a spline functional. The idea
is to fit an elastic plate or membrane to the given data points and allow it to achieve
equilibrium (Fua 1993, Grimson 1981). The resulting representation is of point by point
distance. The second form is to fit polynomial based surface patches directly to the
available distance data. The output representation is of an algebraic surface patch
(Eastman and Waxman 1987, Hoff and Ahuja 1989).

Usually, the interpolation (reconstruction) step is performed as postprocessing, after
the matching is finished and sparse disparity measurements are obtained. Eastman and
Waxman (1987), Hoff and Ahuja (1989) and Olsen (1990) integrate the feature-based
correspondence analysis and the reconstruction. Eastman and Waxman (1987) and
Hoff and Ahuja (1989) fit planar and quadratic surface patches to the measurements.
Olsen (1990) presents multipass attribute matching and reconstruction to achieve dense
disparity estimation. During the matching the requirement for attribute similarity is
relaxed from pass to pass, while the requirement of close agreement between predicted
and measured disparity is strengthened as more measurements are accumulated.

Wildes (1991) presents an analysis of the direct recovery of 3D scene geometry from
binocular stereo disparity. The analysis makes explicit the geometric relations between
a stereo disparity field and a differentially projected scene. It shows how three-
dimensional surface geometry can be recovered through first-order (i.e. distance and
orientation of a surface relative to an observer) and binocular viewing parameters from
stereo disparity.

3. Energy minimization approaches to stereopsis

Many tasks in computer vision, including stereo matching, have been defined
recently in terms of minimization of so-called global energy functions, describing
nonlinear interactions between the observed data and features to be extracted from the
images (Yuille 1989). Regularization theory and stochastic modeling are the major
approaches for mapping the stereo correspondence problem into an optimization
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problem, and will be described briefly in this section. Some of the mostly used
optimization techniques will be covered as well.

Regularization

Stereo matching is an ill-posed problem in the sense of Hadamard (Bertero, Poggio
and Torre 1988, Poggio, Torre and Koch 1985). That is, the solution may not be unique
(ambiguity), or it may not exist (occlusions), or it may not depend continuously on the
measurements (discontinuities). Under some restrictive conditions, it can be regularized
(made well-posed) by a variational principle that contains a term measuring the
dissimilarity in the two images, and a stabilizer that penalizes large disparity gradients
(disparity gradient limit). Assuming conventional camera geometry this results in
minimization of the following energy functional:

IL(x) — R(x + dCo))|| + 2lld’ ()l

where L(x) and R(x) are continuous measures of the left and right images, and d(x) is
the disparity. / is a so-called regularization parameter, and it controls the compromise
between the degree of regularization of the solution and its closeness to the data.

The minimization of the above functional provides a physically plausible solution.
However, it can be inconsistent since it requires d(x) to be continuous and differentiable,
which is not valid in the presence of occlusions and discontinuities. Furthermore, simple
formulation of the first term in the functional such as direct brightness matching of
pixels is a poor solution. If L(x) and R(x) are feature measures rather than intensity
measures, they are not continuous functions of x. To deal with discontinuities and
occlusions, a binary occlusion process (marking locations of occlusion) and a binary
line process (marking locations of discontinuities) can be introduced in the energy
functional as follows:

L) — R(x + dODIA — 0) + Ad" (1 — D + Vi + Vo,

where o is the binary occlusion process, [ is the binary line process, and V and Vo are
cost terms associated with the line and occlusion processes (Belhumeur 1993, March
1988, Terzopoulos, Witkin and Kass 1987, Toborg and Hwang 1991, Yokoya 1992).

Another problem is that there is no reliable way to estimate the parameters that can
be introduced in the functionals which control the relative weight of the various terms
in the energy function. They often depend on the individual image on view.

Stochastic modeling

While in standard regularization use of a priori knowledge leads to restriction of
the solution space, in stochastic modeling a priori knowledge is represented in terms
of appropriate probability distributions. Bayes theory and Markov random fields (MRF)
are used to compute the posterior distribution P(f/g) which represents the likelihood
of a solution f given the observations g. In this way the stereo correspondence problem
can be solved by finding the estimate fthat either maximizes the a posteriori probability
(MAP estimate), or minimizes the expected value of an appropriate error function
(Marroquin, Mitter and Poggio 1987). The MRF formulation makes the value on a
discrete location dependent only on values within a given neighbourhood and the prior
probability can be expressed in the form of a Gibb’s distribution. Thus, it allows the
capturing of many properties of the system of interest just by adding appropriate terms
in the cost function. Such an approach for modeling the stereo matching problem has
been used by Belhumeur (1992), Chang and Chatterjee (1990), Chang and Chatterjee
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(1992), Geiger, Ladendorf and Yuille (1992), Lim and Prager (1993), Marroquin, Mitter
and Poggio (1987), Matthies (1992), and Yuille, Geiger and Bulthoff (1991). Dynamic
programming, simulated annealing and mean field annealing are applied for the
optimization process. Disadvantages of stochastic modeling are the increase of
computational complexity and the difficulty of estimating the parameters in the cost
function.

Optimization

Minimizing a global energy function for stereo matching is a complicated task since
the energy functions are usually highly nonconvex, so that ordinary optimization
becomes trapped in local minima. Computationally demanding stochastic optimization
algorithms, such as simulated annealing (described briefly below), are generally
necessary to compute globally optimal solutions. Faster deterministic algorithms, such
as mean field annealing (described briefly below), graduated non-convexity (Blake and
Zisserman 1987), and Hopfield neural networks (Lee, Choo and Ha 1992, Mousavi and
Schalkoff 1991, Nasrabadi and Choo 1992, Zhou and Chellappa 1988), can often be
used instead, when a good initial guess is available. Multigrid methods can significantly
improve the convergence rate of the iterative schemes (Barnard 1989, Chang and
Chatterjee 1990, Jordan and Bovik 1991, Terzopoulos, Witkin and Kass 1987, Yokoya
1992).

Simulated annealing is a stochastic iterative improvement strategy very suitable for
finding the global minimum of highly nonconvex functions. The basic idea 1s that
controlled uphill steps are incorporated, thus providing a mechanism for escaping from
local minima (van Laarhoven 1987). The frequency and severity of these uphill
movements is reduced by slowly decreasing a parameter T (referred to as temperature)
so that global or nearly global minimum is found. Barnard (1989), Belhumeur (1992),
Chang and Chatterjee (1990), and Jordan and Bovik (1991) utilize simulated annealing
in the matching process. A major drawback of this optimization technique is that the
convergence process is very slow.

Mean field annealing is a new optimization technique that has been developed to
speed up the convergence process in simulated annealing (Bilbro er al. 1989, Chang
and Chatterjee 1992, Lim and Prager 1993, Yuille, Geiger and Bulthoff 1991). While
in simulated annealing the global minimum is achieved through many probabilistic
transitions of every site according to the local characteristics of the site, in mean field
annealing these transitions are replaced by direct evaluation of the average field at each
site, given the local probability density function. This leads to an overall decrease in
the computational time.

4. Parallelism in stereo

Computer vision tasks are computationally very expensive and therefore they
require high-performance computers for practical real-time applications. Requirements
for navigation systems, machine inspection, and other robot vision tasks are still difficult
to meet, although recent stereo matching techniques have speeded up the computation
without compromising reliability. Parallel computing is currently the major tool in
pursuit of the required level of performance. This is why some parallel implementations
of stereo matching algorithms are covered briefly in this section.

Chakrapani, Khokhar and Prasanna (1992) provide a parallel algorithm on fixed size
mesh array using zero-crossings of the LoG operator applied to the images. O(nm/P)
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time complexity is shown for a VVPx\V P processor mesh array, where » is the number
of the zero-crossing points in the left image, m is the set of possible candidate points
in the right image for a given zero-crossing, and 1 <P <n.

Drumbeller and Poggio (1986) present a stereo algorithm for the Connection
Machine, using the north-east-west-south (NEWS) mechanism for parallel execution
of convolution. Zero-crossings of the convolution of the images with an LoG operator
are used as features. Then a 3D set of potential matches are obtained. The amount of
local support for each potential match is determined through 3D convolution. Correct
matches are chosen on the basis of local support, uniqueness and ordering.

Laine and Roman (1991) propose an algorithm for incremental stereo matching on
a SIMD machine. Several existing techniques dealing with the classification and
evaluation of matches, ordering constraint and relaxation, have been integrated and
reformulated in terms of parallel execution on a theoretical SIMD machine. The
machine model assumes a 2D array of pipelined processors and a set of memory arrays
that may be read and/or updated during each matching cycle. Stage processors are
capable of performing four kinds of operations: logical, integer arithmetic, min/max,
and function of one variable. The feasibility of the algorithm is shown by
implementation on a typical commercial SIMD pipelined processor. Reported machine
time for a synthetic image is 54 s and for a real urban one is 62s.

Williams and Anandan (1986) present two hierarchical algorithms designed for
a mesh-connected computer, using the NEWS mechanism for near-neighbour
communications. The first is a mesh-computer implementation of the Marr—
Poggio-Grimson stereo matcher (Grimson 1981) which runs in O(d log d) time where
d is the maximal disparity considered. The second is the mesh-computer implemen-
tation of a motion correspondence algorithm which uses a correlation based technique
requiring O(d’logd) time. The algorithms were simulated on a sequential
machine.

Stewart and Dyer (1990) describe a parallel simulation of the General Support
Algorithm (GSA), a connectionist network for stereo matching. The features used in
GSA are oriented zero-crossings of the LoG smoothed images. Measures are used to
define consistency among nearby edges (disparity gradient constraint), along edge
contours (figural continuity constraint), and across resolution levels (simultaneous
multiresolution). The nodes in the network represent individual candidate matches, and
the connections between nodes are defined by the consistency measures and the
uniqueness constraint. The simulation involves two phases of processing: the first phase
builds three large data structures, and the second phase simulates the iterations of the
network (relaxation). The data structures include the edge images, the list of candidate
matches, and the list of connections between the candidate matches. During each
iteration, new activations of all the nodes are computed based on their prior activations
and on the lists of incoming connections. For both of the phases, computation may be
partitioned among a number of processors with little need for synchronization or mutual
exclusion.

Watanabe and Ohta (1990) propose a new scheme to integrate multiple stereo
algorithms into a cooperative framework. Each algorithm is implemented in a separate
module and executed in parallel. There are three stereo maiching modules: point-based,
interval-based and segment-based matching modules. A disparity map generation
module fuses the results obtained by the three modules. These four modules are
activated in parallel and communicate with each other. When a stereo matching module
encounters a situation which needs assistance from another module, it sends a query
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to the module. The module which received a query then generates an answer and returns
it to the sender.

5. Trinocular stereo

Trinocular stereo analysis has been proposed recently in computer vision as an
alternative to the conventional binocular stereo analysis. The matching is found to
reduce the uncertainty regarding the goodness of local matching by more than a half,
while the computational cost of local matching is increased over binocular stereopsis
by only about one quarter (Dhond and Aggarwal 1990).

The basic advantage of the third camera is the extra epipolar geometry constraint
explained below. Disadvantages are the appearance of a greater number of occluding
edges and the smaller common field of view compared to ordinary stereo. Also, the
requirements on the precision and linearity of the camera system are stricter.

Consider three cameras with optical centres Cy, C,, C3 before image planes Py, Pz, P3
respectively. Given a physical point A, its image A; on camera i is defined as the
intersection of line AC; with an image plane P, (Fig. 12). Points A,, A,, and A; form a
triplet of homologous image points. Any triplet (A, A2, As) is such that A; lies at the
intersection of the epipolar lines L; and Ly defined by the two other image points A,
and A,. Thus, the search for homologous points between two of the images can be
reduced by a simple checking for a point at the intersection of two epipolar lines in the
third image. For example, checking that (A,A;) form a pair of homologous image
points, consists in verifying the presence of A3 at the intersection of Ls; and L3;. This
condition is referred to as the trinocular epipolar constraint.

Ayache and Lustman (1991) present an original trinocular stereo technique. It can
be summarized as follows. A graph-based description of a polygonal approximation of
the contours is extracted from each image. Rectification is performed to simplify the
epipolar geometry. A hypotheses prediction—verification matching strategy is used.
Triplets of potential matches are derived from the previously constructed graphs by
simple geometric verification. The orientation and length of segments are compared,
and epipolar constraints verified. Consistency checks utilizing continuity constraint are
performed to remove ambiguous matches.

Ohta, Yamamoto and Ikeda (1988) describe a trinocular stereo algorithm with three
collinearly arranged cameras (Fig. 13). The correspondence search is based on
two-level dynamic programming. Intervals between two edges on each scanline are
considered as matching primitives. Let (;, ¢;, ro) be edge positions on each scanline.
A node (I; ¢j, rx) in the search represents the correspondence of the three edges. Three
kinds of nodes are distinguished: LCR nodes, L.C nodes and RC nodes. An LCR node

A

p G

Figure 12. Trinocular epipolar constraint.
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Figure 13. Collinearly arranged three cameras.
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Figure 14. TGSA imaging geometry.

is the intersection of three lines each of which corresponds to an edge position on
the scanlines /, ¢ and r. An LC (RC) node is the intersection of two lines each of
which corresponds to an edge position on the scanlines I(r) and ¢, and occluded on
scanline (/). In the first level only LCR (visible) nodes are processed and search is
done on the whole scanline. In the second level, LC or RC (occluded) nodes are
processed and search is applied to each of the local intervals between two adjacent LCR
nodes.

Steward and Dyer (1988) proposed the so-called Trinocular General Support
Algorithm (TGSA). The TGSA is a relaxation algorithm that integrates binocular and
trinocular constraints to select valid matches. It uses cameras positioned at the vertices
of an isosceles right triangle (Fig. 14). Candidate matches are located between the
horizontally-aligned and vertically-aligned pairs of images. Binocular matching
constraints are implemented within each pair of matching images. New trinocular
constraints are used in addition, called trinocular uniqueness and trinocular disparity
gradient. Trinocular uniqueness constrains vertical and horizontal matches for an edge
in the base image so that they have nearly identical disparities. The trinocular disparity
gradient defines support relations between nearby orthogonal matches based on the
relative distance between them and on the difference in their disparities. Stewart and
Dyer assert that the last constraint resolves ambiguity in periodic regions in many cases.

Ohta, Watanabe and Ikeda (1986) use a third camera and a relaxation procedure to
improve the depth map obtained from binocular stereo. The camera geometry involves
a left (L), a right (R), and an upper (U) camera, all with axes parallel to each other.
Correspondence search using dynamic programming is performed on the two stereo
pairs L-U and L-R independently. The two obtained depth maps are then merged using
a relaxation method. Since relations between pairs of images during matching are not
employed, errors from ambiguities in both pairs cannot be recovered.

Other trinocular stereo algorithms are described in Ito and Ishii (1986), Pietikiiinen
and Harwood (1986), Robert and Faugeras (1991), Yashida er al. (1986).
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6. Test images

The following classification can be made about the test images used for the
verification of the stereo matching algorithms:

(1) Random dot stereograms (RDS) are a popular kind of imagery for testing
computational models of stereopsis. An RDS consists of a pair of similar structural
images filled with randomly generated black and white dots, with some regions of one
of the images shifted to either the left or the right relative to the other image. Thus, the
disparity is known at each pixel location. They were suggested by Julesz (1960) for the
investigation of monocular and binocular depth cues in the perception of depth. For
example, such tests have been performed by Chang and Chatterjee (1990), Grimson
(1981), Mayhew and Frisby (1981), Olsen (1986), Pollard et al. (1985), Stewart and
Dyer (1990).

(2) Synthetic scenes have been used, for instance, by Chang and Chatterjee (1990),
Hoff and Ahuja (1989), Ito and Ishii (1986), Medioni and Nevatia (1985), Ohta and
Kanade (1985), and Stewart and Dyer (1988). The correctness of matches was checked
manually.

(3) Block world scenes typically contain objects with polyhedral, cylindrical, or
spherical surfaces characterized by sharp physical boundaries and/or surface markings
and dispersed against contrasting background. The complexity of such images increases
because of the presence of occluding objects and repetitive features on the object
surfaces (an example is a scene containing a Rubik cube). Such tests have been carried
out by Grimson (1985), Ito and Ishii (1986), Kim and Bovik (1988), Medioni and
Nevatia (1985), Ohta and Kanade (1985), Ohta et al. (1986), Ohta et al. (1988),
Pictikiinen and Harwood (1986), Sugimoto et al. (1988), Takahashi and Tomita (1988),
Watanabe and Ohta (1990), Xu et al. (1989), and Yashida er al. (1986).

(4) Indoor scenes usually represent real-life laboratory environments consisting of
many straight line edges with repetitive structure (doors, windows, furniture). Such
scenes have been used by Ayache (1991), Braunegg (1990), Horaud and Skordas
(1989), and Watanabe and Ohta (1990). Indoor scenes are a typical environment for
mobile robots for solving obstacle avoidance and navigation tasks (Triendl and
Kriegman (1987), Tsuji and Zheng (1986)).

(5) Industrial scenes contain one or more industrial parts. Such tests have been
performed by Ayache (1991), Hoff and Ahyuja (1989), Marapane and Trivedi (1989),
Medioni and Nevatia (1985), and Watanabe and Ohta (1990).

(6) Outdoor scenes consist of aerial, natural or man-made terrain images or pictures
of trees. Tests on outdoor scenes have been performed by Ayache (1991), Barnard
(1987), Butler (1992), Fua (1993), Grimson (1985), Gu and Wu (1990), Hoff and
Ahuja (1989), Ohta and Kanade (1985), Pietikdinen and Harwood (1986), and Singer
(1987).

SRI International has recently compiled stereo pairs and sequences for testing and
evaluation (Bolles, Baker and Mannah (1993)). The image sets contain synthetic, indoor
and outdoor scenes that are a real challenge for any stereo matching algorithm. Some
of the provided traps are photometric differences between the two views (brightness
or contrast), repeated patterns, highly ambiguous featurcless backgrounds, data sets
with increasing baselines, and slightly incorrect rectification of the images (vertical
misalignment or rotation).

The Calibrated Imaging Laboratory at CMU also provides data sets with multiple
images of static indoor scene with accurate information about object locations in 3D
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and camera calibration parameters. The type of objects in the images varies from simple
polyhedra to complex model train sets.

7. Conclusion

Stereo vision offers a passive means for deriving detailed 3D information for a scene
without using specialized illumination or energy resources. The correspondence
problem is a key item in stereo. In order to solve it accurately, reliably and efficiently,
the following must be taken into account:

e The choice of features to be matched, the matching rules (constraints) and
strategy, is of great importance. The availability of abstract information
pertaining to the features yields tremendous advantages in restricting the search
space of possible correspondences. Suitable sclection of matching rules and
strategy can eliminate false matches and verify obtained results.

e Stereo vision is task dependent. A given task can influence the choice of features,
matching rules and strategy, as well as the output sufficiency. For example, a
detailed 3D surface profile of an object is required for object inspection and
assembly tasks, whereas for object recognition and navigation tasks, it may be
sufficient to detect features that are located roughly at the same depth, i.e., do not
have large variations in disparities (Grimson 1993). Also, for object inspection
and manipulation tasks, the work space consists typically of man-made objects
with smooth and finished surface details. On the other hand, vision systems for
navigation tasks can function in outdoor environments normally characterized as
having rich, textured surface details.

e Parallel implementations can contribute towards making stereo vision an
attractive tool for practical real-time applications.
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