“Adaptive control of ROVs with actuator dynamics and saturation”

Authors: Ola-Erik Fjellstad, Thor I. Fossen and Olav Egeland,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1992, Vol 13, No 3, pp. 175-188.

Keywords: ROV, model reference adaptive control, actuator dynamics and saturation

Abstract: A direct model reference adaptive controller (MRAC) is derived for an underwater vehicle with significant thruster dynamics and limited thruster power. The reference model decomposition (RMD) technique is used to compensate for the thruster dynamics. A reference model adjustment (RMA) technique modifying the reference model acceleration is used to avoid thruster saturation. The design methods are simulated for the yawing motion of an underwater vehicle.

PDF PDF (1559 Kb)        DOI: 10.4173/mic.1992.3.5

DOI forward links to this article:
[1] A.V. Lebedev and V.F. Filaretov (2008), doi:10.1109/IROS.2008.4650921
[2] Y. Morel and A. Leonessa (2003), doi:10.1109/CDC.2003.1273099
[3] Alexander Lebedev, Vladimir Filaretov and Alla Nesenchuk (2009), doi:10.1109/ICMA.2009.5246457
[4] Alexander Lebedev and Vladimir Filaretov (2007), doi:10.1109/ICMA.2007.4303544
[5] Alexander Lebedev (2010), doi:10.1109/ICMA.2010.5588772
[6] Alexander Lebedev (2013), doi:10.4028/www.scientific.net/AMM.278-280.1473
[7] Charita D. Makavita, Shantha G. Jayasinghe, Hung D. Nguyen and Dev Ranmuthugala (2019), doi:10.1016/j.apor.2019.02.016
[8] (2011), doi:10.1002/9781119994138.refs
[9] Charita D. Makavita, Shantha G. Jayasinghe, Hung D. Nguyen and Dev Ranmuthugala (2021), doi:10.1007/s11804-021-00225-y
[10] Charita Darshana Makavita, Shantha Gamini Jayasinghe, Hung Duc Nguyen and Dev Ranmuthugala (2020), doi:10.1109/JOE.2018.2869508
[11] Charita Darshana Makavita, Shantha Gamini Jayasinghe, Hung Duc Nguyen and Dev Ranmuthugala (2019), doi:10.1109/TCST.2017.2757021
[12] (2021), doi:10.1002/9781119575016.ref
References:
[1] AMERONGEN, J. VAN (1982). Adaptive steering of ships: a model-reference approach to improved manoeuvring and economical course keeping, Ph.D. thesis, Delft University of Technology, The Netherlands.
[2] BUTLER, H., HONDERD, G. AMERONGEN, J. VAN (1991). Reference model decomposition in direct adaptive control, International Journal of Adaptive Control and Signal Processing, 5, 199-217 doi:10.1002/acs.4480050305
[3] FOSSEN, T.I. (1991). Nonlinear modelling and control of underwater vehicles, Dr. Ing. thesis, The Norwegian Institute of Technology, Trondheim, Norway.
[4] FOSSEN, T.I. SAGATUN, S.I. (1991). Adaptive control of nonlinear underwater robotic systems, Proceedings of the IEEE Conference on Robotics and Automation, Sacramento, California, pp. 1687-1695.
[5] HOROWITZ, R. TOMIZUKA, M. (1986). An adaptive control scheme for mechanical manipulators - compensation of nonlinearity and decoupling control, Technical Report no. 80-WA/DSC-6, ASME.
[6] POPOV, V.M. (1973). Hyperstability of Control Systems, Springer-Verlag, Berlin.
[7] SLOTINE, J.-J. E. LI, W. (1987). Adaptive manipulator control: A case study, Proceedings of the IEEE Conference on Robotics and Automation, Raleigh, North Carolina, pp. 1392-1400.
[8] YOERGER, D.R., COOKE, J.G. SLOTINE, J.-E.E. (1990). The influence of thruster dynamics on underwater vehicle behavior and their incorportation into control systems design, IEEE Journal of Oceanic Engineering, 15, 167-178 doi:10.1109/48.107145
[9] YUH, J. (1990). Modeling and control of underwater vehicles, IEEE Transactions on Systems, Man and Cybernetics, 20, 1475 doi:10.1109/21.61218


BibTeX:
@article{MIC-1992-3-5,
  title={{Adaptive control of ROVs with actuator dynamics and saturation}},
  author={Fjellstad, Ola-Erik and Fossen, Thor I. and Egeland, Olav},
  journal={Modeling, Identification and Control},
  volume={13},
  number={3},
  pages={175--188},
  year={1992},
  doi={10.4173/mic.1992.3.5},
  publisher={Norwegian Society of Automatic Control}
};