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Adaptive control of ROVs with actuator dynamics and saturation
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A direct model reference adaptive controller (MRAC) is derived for an underwater
vehicle with significant thruster dynamics and limited thruster power. The reference
model decomposition (RMD) technique is used to compensate for the thruster
dynamics. A reference model adjustment (RMA) technique modifying the reference
model acceleration is used to avoid thruster saturation. The design methods are
simulated for the yawing motion of an underwater vehicle.

1. Introduction

MRAC has successfully been applied for automatic steering of ships by Amerongen
(1982) and for underwater vehicles by Yuh (1990). In practical implementations
actuator dynamics and saturation should be considered. Unmodeled thruster dy-
namics and saturation are causing severe problems in practical implementations of
MRAC. This is due to the structural difference between the reference model and the
process, which may lead to parameter drift and instability. This paper shows how the
stability margins and the performance of the adaptive controller can be improved by
modifying the reference model.

The paper is organized as follows: Section 2 describes the ROV and the actuator
dynamics. Adaptive feedback linearization, the RMD and the RMA techniques are
described in Section 3, while a multivariable RMD applied to ROVs is presented in
Section 4. Section 5 contains a simulation study of the methods.

2. ROV and actuator dynamics

In this section a general model of the ROV dynamics is presented, both in a vehicle-
fixed and in an earth-fixed reference frame. A short description of the thruster dynamics
and saturation is also given.

2.1. ROV dynamics

An untethered underwater vehicle can be described in 6 degrees of freedom (DOF)
by the nonlinear set of equations (Fossen and Sagatun (1991))

Mg +C(4)g + D(§)g + g(x)=B(g)u 1)
x=J(x)§ (2
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where x = [xyz¢0y]" is the position and orientation in the earth-fixed reference frame,
§=[uvwpgr]" is linear and angular velocities in the vehicle-fixed reference frame and
ueR? is the control vector. M is a 6 x 6 inertia matrix, C is a 6 x 6 matrix containing
Coriolis and centripetal terms, D is a 6 x 6 matrix containing viscous damping terms, g
is a vector of restoring forces, and B is an 6 x p input matrix given by the thruster
characteristics and the thruster and the control surface configuration. J is a 6 x 6
transformation matrix depending on the choice of coordinates.

M and C also contain the added mass derivatives. It is common to assume that M is
symmetric and positive definite, ie. M = M” >0. Since D contains the damping terms, it

is positive definite, i.e. D>0.
In the rest of the paper we will assume that 7= B(¢)u, hence
Mg +C(§)g+D(g)d +glx)=1 3

where the vector t of commanded forces and torques is the control vector. The ROV
dynamics can be expressed in an earth-fixed reference frame by differentiating eqn. (2)
according to

i=J(x)§+I(x)j=>G=J (T '%) @
Applied to eqn. (3) this gives
MI %% +(C—MI"' NI 'i+DJ 'x+g=1 5)

Premultiplying eqn. (5) with J~ 7 yields a positive definite matrix M, in front of . By
defining

C(§)=CU~'%)=C'(%) (6)
D(§)D(J ™' %)=D'(x) )

the equations of motion can be written in an earth-fixed reference frame as
M (x)i + C (x, X)% + D (x, £)% + g.(x) =1, ®)

where

M, (x)=J "™™MJ ! ©)
Cx,®)=J"(C'—MJJy! (10)
D (x,x)=J"TD'J ! (11)
g.(0=1"g (12)
=4 Tt (13)

Here M, =(M,)">0 and D,>0.

2.2. Thruster dynamics

It is assumed that the thrusters are actuated by DC motors. An analog inner loop
feedback control system of PI-type with feedback from a tachometer is used to control
the propeller revolution. Hence, reduced performance due to thruster stiction and
hysteresis are kept at a minimum. An alternative approach, proposed by Yoerger et al.
(1990), is to use sliding control (i.e. model based control) to compensate for thruster
model uncertainties. The resulting closed-loop dynamics of the motor with velocity
feedback can be represented by a time constant T, The thruster force 7 is a function of
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Figure 1. Thruster dynamics and saturation.

the motor velocity and has a maximum z,,,,. A simplified block dia gram of the thruster
dynamics is shown in Fig. 1, where z, is the commanded input.

3. Model reference adaptive control applied to ROVs

A modified version of the adaptive feedback linearization scheme of Horowitz and
Tomizuka (1986) will be used. The MRAC applied to ROVs is presented in Section 3.1.
In Section 3.2 the RMD method of Butler et al. (1991)is outlined. This method is used in
MRAC schemes to compensate for unmodeled dynamics. The last subsection shows
how the reference model can be adjusted in presence of actuator saturation, which
always represents a problem in physical systems. The approach here is inspired by the
work of Amerongen (1982).

3.1. Adaptive feedback linearization

This subsection is taken from Fossen (1991), and is presented with only minor
reformulation.

The adaptive feedback linearization scheme for robot manipulators is usually
formulated in joint coordinates. This is due to the fact that for a large number of robot
manipulators, the desired task space coordinates can be transformed to desired joint
coordinates by applying the manipulator’s inverse kinematics. However, in underwater
vehicle control the inverse kinematics does not exist, since § is expressed in a vehicle-
fixed reference frame. Nevertheless, this problem can be avoided by formulating the
adaptive parameter updating law directly in the earth-fixed reference frame.

Previous work on MRAC by Horowitz and Tomizuka (1986) is based on Popov's
hyperstability theory which can be used to prove global stability for the overall system.
However, by applying Lyapunov-like stability theory for non-autonomous systems the
derivation of the adaptive scheme is often much simpler and more intuitive. This is
usually done by applying Barbilat’s lemma, see e.g. Popov (1973). Hence, the laborious
mathematical manipulations imposed by the Popov integral inequality and the
Kalman—Yakubovitch lemma are avoided.

Again, consider the nonlinear equations of motion, eqn. (3), which for simplicity can
be written as

Mg +n(x,g)=1 (14
where
n(x, §)=C(g)g + D(4)g + g(x) (15)
The control law
v=Ma,+ i(x, §) (16)
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where the hat denotes the adaptive estimates and a, is the commanded acceleration,
yields the error dynamics

M(§—a,)=(M—M)a,+(f—n) (17)
Assuming the underwater vehicle equations to be linear in their parameters, the
following parametrization can be applied

(M —M)a, +(i—n)=B(x, 4, a0 (18)

where 6=6—0 is the parameter error vector, and & is the regressor matrix.
The commanded acceleration a, in the vehicle-fixed reference frame can be related
to the earth-fixed acceleration a, through eqgn. (4) as

a,=Jj+Ja, (19)
Applying this relation to the error dynamics gives
MJ (% —a,)=P(x.q4,a,)d (20)

Premultiplying with J 7, the symmetric, positive definite matrix M, from eqn. (8) is
obtained, and the x-frame error dynamics becomes

M (i —a)=J "®(x,§,a,)8 21)
The commanded acceleration vector can be chosen by pole placement as
a,=%,—2A%— A% 1>0 (22)
Defining a measure of tracking (Slotine and Li (1987))
s=X+ A% (23)
the error dynamics can be expressed as
M ($+A5)=J "d(x, §,a,)0 (24)
To prove global stability a Lyapunov-like function candidate is used
Ws,8,0)=4(s"M s+ 8"T9) (25)
Differentiating V with respect to time (assuming M, =0) yields
V=s"M_§+0'Td (26)

where I is a diagonal positive definite weighting matrix of appropriate dimension.
Substituting the error dynamics into the expression for V yields

V= —25TM, s+ ("~ "® +071)D @7
This suggests the parameter update law (assuming 6=0)
0=—T'®"(x,4,a )] '(x)s (28)
which finally yields
V=—2s"M_s<0 (29)

Hence, global stability and asymptotic convergence of £ to zero are guaranteed by
applying Barbilat’s Lyapunov-like lemma.

According to eqns. (16), (19) and (22) this is a series-type MRAC, i.e. the reference
signal is filtered before it is fed to the controller. This is utilized in Section 3.3 where the
reference model is adjusted with respect to actuator saturation.
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3.2. Reference model decomposition

Unmodeled dynamics in the plant affects a MRAC scheme in two ways. First, the
perfect model matching conditions are violated, which means that a set of correct
parameters may not exist. Second, the linear part of the scheme may no longer be
strictly positive real (SPR). However, this will not necessarily cause instability.

The RMD method of Butler et al. (1991) is a technique for making MRAC schemes
more robust in presence of unmodeled dynamics. The idea is to modify the reference
model such that the influence of the unmodeled dynamics on the parameter adaption is
reduced. Note, unmodeled does not necessarily mean completely unknown. In most
cases the frequency range of the unmodeled dynamics is well known, and this can be
utilized in the control design. However, it is important to keep the order of the primary
controller low, and the number of updated parameters at a minimum. Violating this
may lead to non-robust adaption and low performance of the controller.

Consider a linear plant with the transfer function h(s), which can be separated into a
nominal part h,(s) and an unmodelled part h(s) as

h(s)= hy(s)h,(s) (30)
h,(s) can always be decomposed into
h= by(s) 31)

T als)—by(s)
where a(s), b,(s) and b,(s) are polynomials. The decomposition is shown in Fig. 2.
Let W,(s) denote the complete process transfer function

Wy=W,+ 1, )

and W, the reference model based on the nominal part W,. Figure 3 now illustrates
how the decomposition is used in a MRAC scheme.

Notice that b, /(a—b,) represents the unmodeled dynamics in the ideal case. a(s) is
chosen to be of equal order as the unmodeled dynamic denominator which makes the
transfer function b,/a realizable. When a(s) is chosen, b,(s) and b,(s) are determined
according to eqn. (31). Because the unmodelled dynamics is not exactly known, a(s)
must be tuned to give good performance in closed-loop.

One effect of the extra decomposition structure is that the linear part of the MRAC
scheme will have increased gain margin. This is obtained because the real part of the
transfer function is made positive in a larger frequency range. In addition, the output
error is less influenced by the unmodeled dynamics, due to the modification of the
model reference. This is described more closely in Butler et al. (1991).

u + ) y
—= h, by
+ a
b2 -

Figurc 2. Decomposition defined by eqn. (31).




180 O.-E. Fjellstad et al.

r yd + 1 yd
— W b] L _
m ¥ a
l:'2
u —_— }'_
Yo

Figure 3. The decomposition used in MRAC.

3.3. MIMO RMA

The RMA technique can be used to compensate for actuator saturation. This is
obtained by decreasing the gain in the reference model, which has the same effect as
decreasing the desired acceleration, see Fig. 5. Hence, tracking of the desired states
require less control action and saturation is avoided. During saturation, the RMA
matrix F, is chosen as a diagonal matrix of positive ratios

F,={f, ) =diag {min{fﬁ, 1}} (33)

Here t,,,, is the maximum thrust and 7, ; is the commanded thrust corresponding to
thruster i. Notice that if no saturation occurs, f, ;= 1. This is illustrated in Fig. 4.

4. RMD applied to ROVs

We propose to apply the RMD method in a multivariable controller for an
underwater vehicle. This extension is used together with the feedback linearization
scheme of Section 3.1.

4.1. MIMO RMD
Defining the reference model as six second order filters, one for each state variable
x; suggests
Xg,i+ 20000, g O} Xg i =0F 1 (34)
Yai=XaitAXa; (335

where all six pairs of eigenvalues can be chosen independently. Here r; is the reference
input corresponding to state x;. Figure 5 shows the model with the RMA factor f, ..

If J;<,; this yields a SPR transfer matrix W,(s) defined as

. 0§ s+ 4)
W.(s)=d 0N T
) =ciog {32 +2iw¢ s+ w%.i}

According to the actuator dynamics in Section 2.2 the decomposition should reflect the
following transfer matrix

(36)

H,(s)=diag {T,,,sl+ 1} (37
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Figure 4. Adjustment factor f, ; plotted versus Te i

Figure 5. SISO reference model with the RMA factor Soie

where T;, is an estimate of the velocity loop time constant T.. Defining the diagonal
transfer matrices

A()=diag T, ;s+1} (38)
B(s)=1I (39)
B,(s)=diag {(T,,;— T,,)s} (40)
yields the desired decomposition
(I-A"'B))"'A"'B,=H, 41)

Here it is assumed that all thrusters have the same dynamics. A block diagram of the
total system is shown in Fig. 6. According to the figure the reference model can be
expressed as

W, =(sI+ AW, 42)
where A=diag {4} and
Wi(s) = diag] 5“8t @)
R B ey
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Figure 6. MRAC based on RMD.

Also note, when applying RMD the parameter update law is changed to

0=—r-'@"J 'y (44)
where
S'=y—Y
=y—(A"'B,y,+A 'Byy)
=(I—A"'B)y—A"'Byy, (45)

and y, is the compensated model reference output.

5. Case study: simplified model of an ROV in yaw

The methods were examined in simulations using a simplified model of an ROV in
yaw. The following experiments were run:

1. Nominal case (no thruster dynamics nor saturation).

2. Thruster dynamics, no compensation.

3. Thruster dynamics, compensation by RMD.

4. Thruster saturation, no compensation.

5. Thruster saturation, compensation by RMA.

6. Thruster dynamics and saturation, compensation by RMD and RMA.

When considering only one DOF both the Coriolis and centripetal terms vanish.
Neglecting the rolling and pitching motion implies that the steering dynamics can be
expressed as

mj +dfj=1 (46)
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y=¥+uy @
where ¥ is the heading angle and
t=rha, + &) =[agh] [?]=¢6 (48)
0=—I"1¢"s (49)

where s=y—y, is the difference between the system output y and the reference model
output y, When RMD is applied, s is replaced by s’ in eqn. (49).

The reference model was chosen as a critically damped second order system. The
parameter updating law was modified with the following normalization factor

¢

)

to improve robustness.

5.1. The nominal case
The following parameters were chosen as constants in all simulations:

m=400kg m? moment of inertia
d=100kgm?/s dissipation
I'~'=diag {1000,100}  weighting matrix
A=05 closed loop bandwidth
wo=025rad/s natural frequency
(=10 relative damping

The sensor considered was the Motion Reference Unit by Seatex a.s., Pissenteret, N-
7005 Trondheim, Norway which contains accelerometers, inertial rotation sensors and
amagnetometer. The output data rate is up to 50 Hz, and therefore all simulations were

0.3 T T B __"_ﬂ:-:-_?-____-__- - _-‘_-

Imag Axis

21 0 01 02 03 04 0

Real Axis
Figure 7. The output error transfer function for (@) T,=T,=1, (b) T,=05 and (c) T,=005.




184

0.-E. Fjellstad et al.

Yaw angle with reference

50 100
Time [s]

1 Yaw rate with reference

0 50

100
Time [s]
5 Estimated parameters
alf
3 _
2 i
Ll "
% 50 100

Time [s]

Figure 8. Case I: No thruster dynamics nor saturation.
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Figure 9. Case II: Thruster dynamics. No compensation.
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Figure 10. Case III: Thruster dynamics. Compensation by RMD.
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Figure 11. Case IV: Thruster saturation. No compensation.
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Figure 12. Case V: Thruster saturation. Compensation by RMA.
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Figure 13. Case VI: Thruster dynamics and saturation. Compensation by RMD and RMA.
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run with a sampling time of 0-02s. In all figures the reference trajectory is dotted while
the solid line represents the vehicle’s motion. The commanded and actual torque are
denoted with a solid and dotted line, respectively.

Case I: No thruster dynamics nor saturation

Since the perfect model matching conditions were met, and the system was
persistently excited, both parameters converged to their correct values, see Fig. 8.
Notice that the parameters were scaled with a factor 1: 100,

5.2. Thruster dynamics
Case 11: No compensation
The thruster dynamics was modelled with a time constant T.=1[s]. Hence, extra

phase lag was introduced. In this case, the parameter estimates did not converge to their
true values, see Fig. 9, and the total system might even go unstable.

Case I11: Compensation by RMD

The parameter drift in Case IT was removed by applying the RMD method with
T,=T,=1[s] and T,=005[s]. According to F ig. 10 the estimated parameters
converged, but not to their true values. Also note the reduced control action compared
to Case I1. Nyquist plots of the output error transfer function for this scheme is shown
in Fig. 7, for various choices of T, The decomposition effect is illustrated by the
improved phase margin for large frequencies.

5.3. Thruster saturation
Case IV: No compensation

The thruster was assumed to have limited thruster force, that is Tiax = 150 [N]. This
introduced parameter drift during saturation (Fig. 11), a problem similar to integral
wind-up.

Case V: Compensation by RM A

The reference model was modified by applying RMA with an adjustment factor as
shown in Fig. 4. This clearly reduced the occurrence of saturation. The convergence of
the parameter estimates was also improved, see Fig. 12.

5.4. Thruster dynamics and saturation
Case VI: Compensation by RMD and RM A
In the last simulation study, both thruster dynamics and saturation were

considered, see Fig. 13. The RMD and the RMA methods were applied. The result were
nearly similar to those of Case I1L.

6. Conclusions

It has been shown how reference model decomposition (RMD) can be applied to
ROVs with thruster dynamics. A reference model adjustment (RMA) technique was
used to compensate for the thruster saturation. Both methods were demonstrated on a
simplified model of an ROV in yaw with promising results. Parameter drift was avoided
in both cases. With RMA, the parameters converged to their true value.
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