**Page description appears here**

“Real-Time Failure-Detection and Identification Applied to Supervision of Oil Transport in Pipelines”

Authors: Třrris Digernes,
Affiliation: Institute for Energy Technology (IFE)
Reference: 1980, Vol 1, No 1, pp. 39-49.

     Valid XHTML 1.0 Strict

Keywords: Failure detection, failure identification, leakage detection and estimation, multiple hypothesis testing, chi-square test, likelihood ratio tests, multiple model hypothesis probability tests

Abstract: In this paper methods for real-time failure detection and identification are discussed. The methods apply parallel filters of the Kalman type based on plant models that describe the different failure situations as well as normal operation. A failure is determined by identifying the filter having the highest probability of representing the plant. The tests are based on the innovation sequence produced each of the filters. The last section presents simulations from a system designed for supervision of oil transport in pipelines.

PDF PDF (1312 Kb)        DOI: 10.4173/mic.1980.1.3

DOI forward links to this article:
  [1] Nadia Bedjaoui and Erik Weyer (2011), doi:10.1016/j.conengprac.2010.06.008
  [2] YongLiang Zhang and K. Vairavamoorthy (2005), doi:10.1002/nme.1306
  [3] G. Lappus and G. Schmidt (1987), doi:10.1016/B978-0-08-034922-0.50016-9
  [4] K. Suwan and A. Anderson (1992), doi:10.1002/nme.1620330709
  [5] L. Billmann and R. Isermann (1987), doi:10.1016/0005-1098(87)90011-2
  [6] Řyvin Skarstein (1988), doi:10.4173/mic.1988.3.4
  [7] M.B. Beck (1981), doi:10.1016/0043-1354(81)90004-X
  [8] A. Benkherouf and A.Y. Allidina (1987), doi:10.1016/B978-0-08-034083-8.50038-7
  [9] Flor Renteria, Cristina Verde and Lizeth Torres (2016), doi:10.1109/SYSTOL.2016.7739786
  [10] Zdzis aw Kowalczuk and Keerthi Gunawickrama (2000), doi:10.1016/S1474-6670(17)37479-7
  [11] A. Benkherouf and A.Y. Allidina (1986), doi:10.1016/S1474-6670(17)59748-7
  [12] L. Billmann and R. Isermann (1984), doi:10.1016/S1474-6670(17)61238-2
  [13] R. Isermann (1982), doi:10.1016/S1474-6670(17)62959-8
  [14] K. Suwan and A. Anderson (1991), doi:10.1177/014233129101300203
  [15] Javier Jimenez-Cabas, Lizeth Torres, Francisco Ronay Lopez-Estrada and Marco Sanjuan (2017), doi:10.1109/CCAC.2017.8276416
  [16] G. Lappus and G. Schmidt (1990), doi:10.1007/978-94-009-0609-9_12
  [17] Gerhard Lappus (1987), doi:10.1007/978-94-009-3931-8_14
  [18] Lizeth Torres, Javier Jiménez-Cabas, Omar González, Lázaro Molina and Francisco-Ronay López-Estrada (2020), doi:10.3390/jmse8030173

[1] ATHANS, M., CHANG, C.B. (1976). Adaptive estimation and parameter identification using a multiple model estimation algorithm, Technical note 1976-28, Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, Massachusetts, U.S.A.
[2] DIGERNES, T. (1979). A discussion and an evaluation of some real-time failure detection and identification methods with application to supervision of oil transport in pipelines, IFA Work Report ESS-11, Institutt for Atomenergi, Kjeller, Norway.
[3] CHIEN, T.T., ADAMS, M.B. (1976). A sequential failure detection technique and its application, IEEE Trans. Autom. Control, 21, 750-757 doi:10.1109/TAC.1976.1101363
[4] KALMAN, R. E. (1960). A new approach to linear filtering and prediction problems, J. Bas. Engng, 82D, 34-45.
[5] MEHRA, R.K., PESCHON, J. (1971). An innovations approach to fault detection and diagnosis in dynamical systems, Automatica 7, 637-640 doi:10.1016/0005-1098(71)90028-8
[6] WILLSKY, A.S. (1976). A survey of design methods for failure detection in dynamic systems, Automatica, 12, 601-611 doi:10.1016/0005-1098(76)90041-8

  title={{Real-Time Failure-Detection and Identification Applied to Supervision of Oil Transport in Pipelines}},
  author={Digernes, Třrris},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}


Oct 2018: MIC reaches 3000 DOI Forward Links. The last 1000 took 2 years and 5 months.

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.

July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.

Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.

Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.

Jan 2012: Follow MIC on your smartphone by using the RSS feed.


July 2011: MIC passes 1000 ISI Web of Science citations.

Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.

Dec 2009: A MIC group is created at LinkedIn and Twitter.

Oct 2009: MIC is now fully updated in ISI Web of Knowledge.