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In this paper methods for real-time failure detection and identification are
discussed. The methods apply parallel filters of the Kalman type based on plant
models that describe the different failure situations as well as normal operation.
A failure is determined by identifying the filter having the highest probability of
representing the plant. The tests are based on the innovation sequence produced
Ry each of the filters. The last section presents simulations from a system designed
for supervision of oil transport in pipelines.

1. Introduction

The purpose of a supervision system is to detect and identify, as soon as possible,
any failure in the observed process. The information from the process is observed
by sensors which may also fail. A sensor failure is not critical, however, if redundant
observation systems are used. In the case of no redundancy, the process can still
operate in short maintenance periods without complete observation. It is, therefore,
important to choose supervision methods capable of discriminating between simple
sensor failure and the more serious process failure. Such systems must be devised to
avoid production shutdowns by the less critical sensor faults. This is especially
important for large and high-cost plants.

A simple and reliable method for detecting sensor failure, which is extensively
used, is the local sensor redundancy method with the ‘two out of three” voting tech-
nique being most common. However, if there are many observation points a large
number of sensors would be required which would then create a high global redun-
dancy not properly utilized. If the sensors are complex and expensive the local
redundancy method may prove to be unacceptable. Should this be the case, methods
using process knowledge to compare different observations from various points
within the process may prove to be more feasible.

The most common process failure detection methods are high and/or low alarm
limits. These alarm limits are positioned around a normal operating point in the state
space or along a normal operating trajectory in the state-time space. These detection
methods are usually not applicable or have a reduced reliability during transients,
such as load variations, start-up and shut-down periods. Owing to normal fluctua-
tions in the process, the alarm limits are often set far from normal operation bounds
to avoid repeated false alarms.

If conventional systems satisfy the design specifications, there is no reason to
choose more complicated systems. On the other hand, if more accurate supervision
is required, statistical methods and the estimation technique introduced by Kalman
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(1960) may be used. This method is discussed in a paper by Mehra and Peschon
(1971). A detailed survey of design methods for failure detection is given by Willsky
(1976).

In this paper, some promising methods for failure detection in a supervision
system for oil transport are discussed, as well as illustrated, by simulations. A more
detailed description may be found in a work report by Digernes (1979).

2. Formulation of the failure detection problem

Failure detection may be performed in different ways. There are systems that only
give an alarm, systems that identify the failure, or systems that estimate the charac-
teristic values of the failure parameters. In a simple alarm system there is normally not
enough information if a quick failure action is required, while a complete estimation
of all failure variables normally requires an unacceptable number of sensors to make
the model observable. If this is the case, systems based on multiple hypotheses testing
seems to be applicable.

The failure identification may be performed by testing the following hypotheses:

Hi(k): The process model P; and the observation model M, represent the plant
behaviour at time k,i={l, 2, ..., K}.

One of the hypotheses represents the normal operation, while the others represent the
different failure situations.

The tests may be performed by parallel Kalman filters based on the models
defined by the hypotheses. The filter innovation, which is the deviation between the
plant and the model observation, can then be used to identify the hypothesis having
the highest probability of representing the plant.

It is well known that if the plant noise is Gaussian, the Kalman filter innovation
also becomes Gaussian with probability density given by

dilk+ 1 |k)=C, exp (0-5r(k +1|K)T Rk + 1]k)~ vk +1|k)) )

where C;=(2a)~"/?(det R(k+ 11k))~"2 - ri(k +1|k) is the innovation at time k + |
of the filter based on the ith hypothesis and R,(k+1]|k) is the covariance of the inno-
vation. m; i1s the dimension of the observation vector.

Detailed process failure models are usually not known. However, satisfactory
results are normally obtained by simple models of the type xp=wvg, where xp is a
vector containing failure parameters in the process model and vy is white noise.

If redundancy exists in the observations, different observation models may be
defined by ordering the sensors in subsets each making the plant observable. To
increase the estimation accuracy the normal operating model should contain all
sensors. In addition, to prevent the estimation from breakdowns, if all observation
models contain failed sensors, there should be an observation model including only
noise. A critical situation will only occur if this model is the true observation model,
since the estimate is then based on prediction, and process failures are not detectable.
However, the process may still operate normally.

A simple observation model that includes failure modes is given by:

Y(K)= py (A(x(k)) + wr) + pawe 2)

where p(k) is the observation, In normal operation the failure parameters are given
by (u4,p2)=(1,0) and the observation noise is assumed to be Gaussian with
wn~ N0, Wy). In the case of failure (i,, u,)=(0, 1). The failure noise wy may be
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defined by wg~ N(wg, Wy), normally with wy=0, and Wg> W), but other distri-
butions as, for instance, the uniform distribution may also be used.

3. Actual test methods

The failure detection methods most commonly used are the well-known chi-
square test and the likelihood ratio test. The first test is mainly an alarm detection
method, while the last test is a failure identification method. Since these methods are
well known from the literature, only the test variables used shall be defined.

The chi-square test variable is defined by

k+1
zok+1)= Y, r(i+ T DTRG+ ) '+ 1)) 3)
j=k*¥2-N
where index / indicates the ith hypothesis and N is the window of samples used in the
Lest.
The log-likelihood ratio test variable is defined by

Ak +1)=In (fi(k + 1K)k + 1K) +Alk) Q)

where (k+1|k) and #,(k + 1| k) are the probability density of the innovation from
the filters based on the ith failure hypothesis and the normal operation hypothesis,
respectively. A detailed description of this method is given by Chien and Adams
(1976).

Another promising method which has been tested shall, in this paper, be called
the Multiple Model Hypothesis Probability Test (MMHPT). To the author’s know-
ledge, failure detection using this method has not been reported. A detailed descrip-
tion of the method will therefore be given in the next section. The method is, however,
closely related to the paralle] Kalman filter theory described by Athans and Chang
(1976).

4. The multiple-model hypothesis probability test (MMHPT)

This section describes a sequential method that calculates the hypothesis proba-
bility for each of the hypotheses. The method is based on a multiple model estimator
containing parallel Kalman filters, and algorithms for prediction and updating of the
probabihties.

The estimated hypothesis probabilities shall be defined by the following variables:

Gk +¥|k): a priori hypothesis probability that hypothesis H(k+ 1) is true when
the observation sequence up to and including time k is known.

Gk +1): a posteriori hypothesis probability that hypothesis H(k +1) is true at
time k+ 1 when the observation sequence up to and including time
k+1 is known,

The relationship between these probabilities, which is derived by Bayes’s theorem,
is given by

ahr )= ZENAEATD 5 Ky (s)

T dutk-+ 11Kk +11K)
A
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where (k+1 k) is given by eqgn. (1), if the innovation is assumed to be approxi-
mately Gaussian. The initial values are given by §,(1'0)=§,;. Furthermore, we have

L atk+)= 3 adk+1lio=1 (6)

The prediction from (k) at time k to §;(k+1|k) at time k+1 is a process-
dependent relation which expresses the time evolution of the hypothesis probabilities.
Two possible prediction models are

(a) Static prediction with lower bound.
Gtk +1|ky=alk (1 — o;)qu; +oib(k)gi(k)), i={l,2,...,K} 4]
where o;=1 if §,(k)>qy;, which is the lower bound of g;(k), otherwise o;=0. Further,

b{k)=(l— _Z. (]bcr,)qu) / Y odidk) and a(k)=1

i=1

A more simple and normally satisfactory prediction is obtained by setting

K
b)=1 and ad)=1] 3 (=odaurtadi)
(b) Semi-Markov process.

§k+1[k)y=Q(k +1]k)§(k) (®)
where §(-)"=[4,(-), §.(*), ..., §x(-)] and Q(K+1|k) is a probability transition
matrix.

The overall a posteriori state estimate is given by
fk+1)=E(x(k+1)| ¥Y(k+1))

K
= Y T2(k+1)gik+1) )
i=1

where Y(k+1) is the observation sequence, and ®;(k+1) is the @ posteriori state
estimate calculated by the ith filter. T is a selection matrix, with elements {0, 1} used
to rearrange the elements of £,(+) in accordance with the elements of £(-). If £(-) and
£,(*) have identical element arrangement, 7; becomes an identity matrix.

The overall a posteriori state error covariance is given by

X(k+1)=E((x(k+1)— £k + D))x(k + 1) — £Gc+ 1)T| ¥(k+1))
K
= Y TuXik+1)+ék+Défk+ 1))k +1) (10)
i=1

where é{k+1)=24k+1)—%(k+1) and X(k+1) is the error covariance based on
the ith filter.

In the case where different observation models are tested, the calculation time
may be reduced by the method described in the Appendix.

5. Simulation examples

The ability of these methods to detect failure in oil pipeline systems shall be
illustrated by simulations. The examples are based on observations generated by a
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pipeline simulator. The pipeline data used are mainly from the Ekofisk—Teesside
pipeline.

The pipeline is shown in Fig. 1. The oil streams from the inlet end I to the outlet
end O. The pipeline is divided into three 1-0x 10° m sections by the platforms A and
B. The sections are numbered from 1 to 3 counting from the inlet end. The observa-
tions are as follows: the inlet flow w,; the outlet flow w,; the inlet pressure p;; the
platform pressures p, and pg; and the outlet pressure pg.

LEAKAGE POSITION

1 A B

L 1 1y P2 1 F3 o
1 2 3

"1 Pa g Po

" “2 W3 we

Figure I. Pipeline structure,

A deterministic process model is given by the following space-discrete equations:
Mass balance
Pi=(wi—w  — 0w )k, i={1,2, .., s} aan
Momentum balance
Wi=—filw1)+b,(pr—pPy)
Wi=—fi(w)+bdpi-1—pi+ 01 pui-y)  i={2,3, ..., 5} (12)
Wer1=—fer 1(Wei 1) +bss 1(Ps—Po + 0:prs)

External variables

ﬁ’l=0
(13)
Po=0
Leakage models
W =0
i={1,2,...,5) (14)
13u=0

s is ‘the number of sections used in the numerical space discretization, s=3 is used in
the failure detection program, while s=15 is used in the pipeline simulator. The flow
states w; and the pressure states p, are defined in Fig. 1. The failure states w,; and
po; are leakage and pressure jumps respectively. The pressure jumps are related to the
leakage position and can, together with the leakage estimate, be used to calculate
this position. 8, is a parameter defining the process failure structure in section i.
g, fi(-), and b, are compressibility parameters, non-linear friction terms, and pressure
force parameters respectively. The temperature accumulation is neglected in this
model, but can easily be incorporated by augmenting the model by the energy balance
equation.
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The deterministic observation model is given by the following equations:
Yi=w )
Y2=Wo

Ys=p
> - @1s)
Va=Pa=(P1+0:1pL1+p2)[2

Vs=Pp=(P2+0:pL2+Pp3)[2

Ye=DPo

The noise is defined in accordance with the Kalman filter theory. The following
simulated events are used in the tests:

Case A. A 0-3 bbls/s leakage, which is 1% of the total flow, occurs at t=300s in
the position 1-1 x 105 m from the inlet end, which is in section 2.

E

Case B. As in Case A, but in addition, an abrupt failure occurs in the observation
of pg, defined by py=0 for r>180s.

Case C. As in Case A, but now a growing failure occurs in pg, defined by tg=
0-055(r— 100) for £> 100 s, which is one standard deviation each 100 s.

The methods tested are:

(1) Test of normal operation.
The chi-square test of normal operation is shown in Figs. 2, 3 and 4 representing
Cases A, B and C respectively.

20k

10l REJECTION Ling]

L i i 1 1
o 200 A00 600 800 000 1200(5)

Figure 2. Chi-square test of normal operation, z;(k); Case A.

o 1 L 1 1 1
8] 200 400 600 800 W00 1200 (S)

Figure 3. Chi-square test of normal operation, z,(k); Case B.
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Figure 4. Chi-square test of normal operation, z,(k); Case C.

(2) Failure identification by multiple hypothesis tests.
The following hypotheses are tested:

Hy: normal operation, 87 =0, 0, 0]
1if i=j

Hy;: leakage in section i, i={1, 2, 3}, Gj={0 otherwise

Hg,: observation failure in sensor {

The sensor failure modes are defined in accordance with the method described in
§2.

The likelihood ratio test is only shown for Case A, Fig. 7. The other tests are all
performed by the MMHPT method.

Case A is shown in Figs. 5, 6 and 7. The probability of hypothesis Hy, Fig. 5,
increases from the initial value of 0-7 to near 1-0, which indicates that the plant is in
normal operation. However, approximately 100 s after the leakage has occurred,
the probability of H starts decreasing and a failure is declared about 160 s after the
leakage occurs. The failure is further identified as a leakage in section 2, hypothesis
H, ,, approximately 250 s after the leakage has occurred. The estimate of the leakage
position is 112 x 10° m from the inlet end. This is an accurate result compared with
the numerical accuracy used in the space discretization of the process model. A
satisfactory estimate of the leakage, Fig. 6, is obtained after approximately 250 s.
The log-likelihood ratio test is shown in Fig. 7, where max A=A, for > 560 s indi-
cates that a leakage has occurred in section 2.

0 200 400 GO0 BOO 1000 1200 (S)

Figure 5. Hypothesis probabilities, §,(k); Case A.
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Figure 7. Log-likelithood ratio, Ai(k); Case A.

Case B is shown in Figs. 8 and 9. The normal operation hypothesis Hy, Fig. 8, is
rejected almost immediately after the sensor has failed. At the same time the proba-
bility of normal operation and failure in sensor number 5, indicated by Hy gs, in
Fig. 8, approaches 1-0. This situation is not dangerous. However, when the leakage
occurs, the probability that both a leakage in section 2 and a failure in sensor number
3, indicated by H,, s in Fig. 8, approachés 1-0. This is a critical situation since a
leakage is detected. A comparison of the leakage estimate in this case, Fig. 9, and
Case A, Fig. 6, shows that the estimate differs more from the true leakage in Fig. 9.
However, after 400 s the true leakage and the estimated leakage become approxi-
mately identical.

oo ! L 1 i I
1] 200 400 EO0 8O0 1000 1200 (S)

Figure 8. Hypothesis probabilities §,(k); Case B.
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Figure 9. Most probable leakage (bbls/s); Case B.

Case C is shown in Fig. 10. The leakage estimate is similar to Case B, Fig. 9. The
hypothesis probabilities, Fig. 10, are almost identical to case B, Fig. 8, and a detailed
discussion is therefore not repeated.

Hia Fy

[¢] 200 400 600 800 1000 1200 (S)

Figure 10. Hypothesis probabilities §,(k); Case C.

6. Conclusion

In this paper some methods for failure detection have been discussed and illus-
trated by simulations. The MMHPT method seems to be especially effective for
failure identification in oil pipeline systems. This method seems also to give the
operator more information concerning the failure situation than the chi-square and
the likelihood ratio methods. A practical advantage is that the test variables are
normalized to the region (0., 1.). In addition eqn. (9) makes it possible to obtain a
better estimate of the failure parameters during transitions from normal to failure
operation.

One drawback to methods based on multiple hypothesis testing is that they require
relatively large calculation time and storage. However, the MMHPT algorithms are
suitable for parallel processing in microprocessors. Another possible solution would
be to use a simplified continuous real-time detection method, such as the chi-square
test of normal operation, and activate the real-time failure identification only if the
chi-square test has detected a failure.

The methods for prediction of the probability density have been tested and the
simplest form of eqn. (7) was found to give a satisfactory result in the test cases
described.

The method described in the Appendix is not yet completely tested, but seems to
give satisfactory results and reduced calculation time if the process models are
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complex and there is a large number of observation models, or if serial processing of
the observations is used.
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Appendix
Multiple model hypothesis probability test in the case of independent process and
observation models

If the process and observation models are independent, the following hypotheses
can be tested:

H,[(k+1): The true hypothesis is a combination of the independent hypotheses
Hpi(k+1) and H,(k+1) assuming process model P; and observation
model M; to be true; i={1,2, ..., I}, j={1, 2, ..., J}.

Owing to the independence, the a posteriori hypothesis probabilities may be split
as follows:
Gifle+1|ky=6(k+ 1|k)b,(k +1]|k) (A1)

Gulk+1)=8k+ 1Bk +1) (A2)

where @,(-) and f,(-) are the hypothesis probabilities that process model i and obser-
vation model j are true.
The a posteriori hypothesis probabilities then become

&,(k+l)=c( i ¢u(k+]|k),§,(k+l|k)) &k +1|k) (A3)
Jj=1
.é,(k+1)=c( )_El qb,,(k+l|k)&,(k+l|k)) Bk +1lk) (A 4)
1= )f &k +1]k) )f Pk +1|k)B(k+1]k) (A5)
i=1 j=1

where i, (k + 1| k) is the probability density of the innovation based on the ith process
model and jth observation model.

"The prediction of &(k +1|k) and f,(k+ 1|/k) may be performed by rules equivalent
to those described in §4.

The a posteriori state estimates are given by

Rk +1) =2k + 1K)+ Kk + Dr(k+1|k) (A6)

k+1)= )5 £+ 1Bk +1)
=1
J
=k+1[K)+ Y Kk+Drk+1|K)fk+1) (A7)
=1

$(k+1)= Zl: TR+ 1)ak+1) (A 8)
i=1




Real-time failure detection and identification 49

where £(k+1) is the overall a posteriori state estimate. ®,(k+1|k) and £,(k+1) are
the a priori state estimate and the a posteriori state estimate based on the ith process
model. £;(k+1), K,{k+1), and r,(k+1|k) are the a posteriori state estimate, the
filter gain, and the innovation based on the ith process model and the jth observation
model. 7} is a selection matrix belonging to the ith process model.

The a proteriori state error covariance of the ith process model is given by

x(k+1)= i X+ 1) +é, (k+ 1)é (k+ 1Dk +1) (A9)
i=1

where é(k+1)=2%;{k+1)—%(k+1), and x,(k+1) is the a posteriori state error
covariance based on the ith process model and the jth observation model.
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