“A Safety Study for Dynamical Systems on Heisenberg Lie Group of dimension 4”

Authors: Sultan Selcuk Sutlu, Bedia Akyar, Ayse Kara Hansen and Aysegul Kivilcim,
Affiliation: Acibadem University, Turkey, IBC International Business College, Denmark, Aarhus University and Aalborg University
Reference: 2025, Vol 46, No 4, pp. 137-145.

Keywords: Safety, Heisenberg Lie group, dynamical systems

Abstract: The safety property of dynamical systems has typically been studied in Euclidean spaces. In this work, we extend the notion of safety to a non-Euclidean geometry. Motivated by the role of time as a fourth dimension in physical models, we construct the 4-dimensional Heisenberg Lie group H4 and investigate the safety problem of dynamical systems defined on this group. Unlike odd-dimensional Heisenberg Lie groups, which admit a unique structure, even-dimensional cases allow multiple forms; in particular, H4 possesses four distinct forms. Focusing on one such form, we provide a detailed analysis of dynamical systems on H4. Moreover, using a diffeomorphism between the (2n+1)-dimensional Heisenberg Lie group and the Euclidean space of the same dimension, we establish their equivalence, and we extend safety result for H4. Several examples are presented to illustrate the applicability of the theoretical results.

PDF PDF (276 Kb)        DOI: 10.4173/mic.2025.4.1

References:
[1] Colcombet, T., Ouaknine, J., Semukhin, P., and Worrell, J. (2019). On Reachability Problems for Low-Dimensional Matrix Semigroups, 2019. pages 44:1--44:15. doi:10.4230/LIPIcs.ICALP.2019.44
[2] Iliashenko, I. U.S. and Li, W. (1999). Nonlocal bifurcations, 1999. doi:10.1090/surv/066
[3] Kivilcim, A., Karabacak, O., and Wisniewski, R. (2019). Safety verification of nonlinear switched systems via barrier functions and barrier densities, In 2019 18th European Control Conference (ECC). pages 776--780. doi:10.23919/ECC.2019.8796081
[4] Kivilcim, A. and Wisniewski, R. (2021). Weak safe reachability for nonlinear systems with state-dependent switching, In 2021 60th IEEE Conference on Decision and Control (CDC). pages 5350--5355. doi:10.1109/CDC45484.2021.9683662
[5] Lohse, M., Schweizer, C., Price, H.M., Zilberberg, O., and Bloch, I. (2018). Exploring 4d quantum hall physics with a 2d topological charge pump, Nature. 553(7686):55--58. doi:10.1038/nature25000
[6] Prajna, S. and Jadbabaie, A. (2004). Safety verification of hybrid systems using barrier certificates, In R.Alur and G.J. Pappas, editors, Hybrid Systems: Computation and Control. Springer Berlin Heidelberg, Berlin, Heidelberg, pages 477--492. doi:10.1007/978-3-540-24743-2_32
[7] Prajna, S. and Rantzer, A. (2007). Convex programs for temporal verification of nonlinear dynamical systems, SIAM Journal on Control and Optimization. 46(3):999--1021. doi:10.1137/050645178
[8] Scano, P.S. (2024). Space and time, do we describe them correctly? on the 4-dimensional structure of the universe, Nature. doi:10.33774/coe-2024-203js
[9] Székelyhidi, L. (2023). A generalization of the heisenberg group, Journal of the Iranian Mathematical Society. 4(2):105--119. doi:10.30504/jims.2023.396137.1113
[10] Zilberberg, O., Huang, S., Guglielmon, J., Wang, M., Chen, K.P., Kraus, Y.E., and Rechtsman, M.C. (2018). Photonic topological boundary pumping as a probe of 4d quantum hall physics, Nature. 553(7686):59--62. doi:10.1038/nature25011


BibTeX:
@article{MIC-2025-4-1,
  title={{A Safety Study for Dynamical Systems on Heisenberg Lie Group of dimension 4}},
  author={Sutlu, Sultan Selcuk and Akyar, Bedia and Hansen, Ayse Kara and Kivilcim, Aysegul},
  journal={Modeling, Identification and Control},
  volume={46},
  number={4},
  pages={137--145},
  year={2025},
  doi={10.4173/mic.2025.4.1},
  publisher={Norwegian Society of Automatic Control}
};