“Control Study of Hydropower System with Francis Turbine in Isolated Operation”
Authors: Usha Adhikari, Pramish Shrestha and Bernt Lie,Affiliation: Kathmandu University and University of South-Eastern Norway
Reference: 2025, Vol 46, No 2, pp. 89-99.
Keywords: Francis turbine, dynamics, nonlinear model of hydropower plant, stability, PID controller
Abstract: This paper provides a comprehensive examination of controller design for hydropower systems equipped with Francis turbines operating in isolated conditions. By employing a mechanistic modelling approach using differential algebraic equations, the study captures the complex interplay of hydraulic, mechanical, and electrical subsystems, enabling an in-depth analysis of system dynamics under varying load conditions. A two-step approach is adopted, where a PID controller is initially designed for a linearized model and subsequently tested on a nonlinear model, allowing for a systematic evaluation of its performance, in accordance with the Norwegian Transmission System Operator specifications. The controller design process emphasizes achieving critical stability margins, meeting industry standards, and addressing the challenges posed by nonlinear system behaviour. The novelty of this work lies in the use of a recently developed Francis turbine model, its application to a real-world hydropower plant using realistic parameters, and the presentation of the controller design from a control engineering perspective. Directions for future work include exploring optimization-based controller designs, incorporating realistic load profiles, and refining system model to address complex real-world scenarios.

References:
[1] Primary frequency regulation performance in hydropower systems: Precise quantification and holistic enhancement under wide-range operation. (2025). Applied Energy, 389:125711. doi:10.1016/j.apenergy.2025.125711
[2] Adhikari, U., Shrestha, P., and Lie, B. (2024). Hydropower system with francis turbine for control-study, In 2024 IEEE International Conference on Power System Technology (PowerCon). pages 1--5. doi:10.1109/PowerCon60995.2024.10870523
[3] BaggeCarlson, F., Falt, M., Heimerson, A., and Troeng, O. (2021). ControlSystems, jl: A Control Toolbox in Julia. In 2021 60th IEEE Conference on Decision and Control (CDC). pages 4847--4853. doi:10.1109/CDC45484.2021.9683403
[4] Brekke, H. (2001). Hydraulic Turbines: Design, Erection and Operation, Norwegian University of Science and Technology (NTNU), Trondheim, Norway. https://www.ntnu.no/documents/381182060/1267681377/HYDRAULIC+TURBINES_Hermod+Brekke+-+2015.pdf.
[5] Cervantes, M.J., Sundström, J., Shiraghaee, S., Kjeldsen, M., and Wiborg, E.J. (2024). Extending the operational range of francis turbines: A case study of a 200 mw prototype, Energy Conversion and Management: X. 23:100681. doi:10.1016/j.ecmx.2024.100681
[6] Chen, R. (2024). A comprehensive analysis of pid control applications in automation systems: Current trends and future directions, In Highlights in Science, Engineering and Technology, Vol. 97 (2024): Proceedings of the 7th International Conference on Mechatronics, Control and Electronic Engineering (MCEE 2024). Darcy & Roy Press Co., pages 126--132. doi:10.54097/6q4xxg69
[7] Cominos, P. and Munro, N. (2002). Pid controllers: Recent tuning methods and design to specification, Control Theory and Applications, IEE Proceedings -. 149:46 -- 53. doi:10.1049/ip-cta:20020103
[8] Gunatilake, H., Wijayatunga, P., and Roland-Holst, D. (2020). Hydropower Development and Economic Growth in Nepal, 2020. doi:10.22617/WPS200161-2
[9] Hu, X., Wang, T., Chen, K., and Ye, P. (2023). Research on control system for improving the grid‐connected efficiency of small hydropower, Energy Reports. 9(24):772--783. doi:10.1016/j.egyr.2023.04.344
[10] Kishor, N. and Fraile-Ardanuy, J. (2017). Modeling and Dynamic Behaviour of Hydropower Plants, 2017. doi:10.1049/PBPO100E
[11] Ma, Y., Gowda, S., Anantharaman, R., Laughman, C., Shah, V., and Rackauckas, C. (2021). Modelingtoolkit: A composable graph transformation system for equation-based modeling, 2021. doi:10.48550/arXiv.2103.05244
[12] Nagode, K., Škrjanc, I., and Murovec, B. (2022). Enhanced stability and failure avoidance of hydropower plant in contingent island operation by model predictive frequency control, Energy Reports. 8:9308--9330. doi:10.1016/j.egyr.2022.07.040
[13] Ngoma, D.H., Mfangavo, A., and Masenga, B. (2025). Comparative control governor systems for power and frequency optimization of an islanding off-grid small hydropower plant, Discover Energy. 5(6). doi:10.1007/s43937-025-00066-8
[14] Nielsen, T.K. (1996). Dynamic Behaviour of Governing Turbines Sharing the Same Electrical Grid, In E.Cabrera, V.Espert, and F.Martínez, editors, Hydraulic Machinery and Cavitation, pages 769--778. Springer Netherlands, Dordrecht. doi:10.1007/978-94-010-9385-9_78
[15] Pandey, M. (2023). Modelling Tool for Hydropower Systems, with Analysis and Design, Ph.D. thesis, University of South‑Eastern Norway. https://openarchive.usn.no/usn-xmlui/handle/11250/3093026. Accepted: 2023-09-29T09:52:03Z ISSN: 2535-5252.
[16] Pavon, W., Jaramillo, M., and Vasquez, J.C. (2024). A review of modern computational techniques and their role in power system stability and control, Energies. 17(1):177. doi:10.3390/en17010177
[17] Shanab, B.H., Elrefaie, M.E., and El-Badawy, A.A. (2020). Active control of variable geometry francis turbine, Renewable Energy. 145:1080--1090. doi:10.1016/j.renene.2019.05.125
[18] Skogestad, S. (2004). Process control: Lecture notes, https://techteach.no/presentations/tekna_olje_gass_04/lecture/documents/skogestad.pdf, 2004.
[19] Statnett. (2024). NVF 2024 Nasjonal veileder for funksjonskrav i kraftsystemet, Technical Report 2023/3883‑28, Statnett. https://www.statnett.no/globalassets/for-aktorer-i-kraftsystemet/systemansvaret/retningslinjer-fos/nvf-2024---nasjonal-veileder-for-.funksjonskrav-i-kraftsystemet.pdf.
[20] Vinod, J., Sarkar, B.K., and Sanyal, D. (2022). Flow control in a small francis turbine by system identification and fuzzy adaptation of pid and deadband controllers, Renewable Energy. 201:87--99. doi:10.1016/j.renene.2022.11.039
[21] Vytvytskyi, L. (2019). Dynamics and model analysis of hydropower systems, Doctoral thesis, University of South-Eastern Norway. https://openarchive.usn.no/usn-xmlui/handle/11250/2608105. Accepted: 2019-08-13T11:10:38Z ISSN: 2535-5252.
[22] Vytvytskyi, L. and Lie, B. (2018). Mechanistic model for francis turbines in openmodelica, IFAC-PapersOnLine. 51(2):103--108. doi:10.1016/j.ifacol.2018.03.018
[23] Zhang, Z. (2018). Master equation and runaway speed of the Francis turbine, Journal of Hydrodynamics. 30(2):203--217. doi:10.1007/s42241-018-0026-5
[24] Zhang, Z. (2022). Improvement and extension of cordier diagram for hydraulic turbines, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 236(7):1309--1319. doi:10.1177/09576509221092282
[25] Zhao, Z., Ding, X., Behrens, P., Li, J., He, M., Gao, Y., Liu, G., Xu, B., and Chen, D. (2023). The importance of flexible hydropower in providing electricity stability during china’s coal phase-out, Applied Energy. 336:120684. doi:10.1016/j.apenergy.2023.120684
BibTeX:
@article{MIC-2025-2-3,
title={{Control Study of Hydropower System with Francis Turbine in Isolated Operation}},
author={Adhikari, Usha and Shrestha, Pramish and Lie, Bernt},
journal={Modeling, Identification and Control},
volume={46},
number={2},
pages={89--99},
year={2025},
doi={10.4173/mic.2025.2.3},
publisher={Norwegian Society of Automatic Control}
};