“Heavy-Duty Vehicles charging infrastructure energy demand and factors affecting their placement in Finland”
Authors: Saleem Rashid, Anna Tupitsina, Marek Rehtla, Altti Merilainen, Niko Nevaranta, Jero Ahola and Tuomo Lindh,Affiliation: Lappeenranta University of Technology
Reference: 2025, Vol 46, No 2, pp. 69-88.
Keywords: battery electric truck; charging infrastructure; European Union regulations; energy demand; geo-spatial mapping; heavy-duty vehicles
Abstract: A notable share of greenhouse gas (GHG) emissions from road freight in Europe stems from heavy-duty vehicles (HDVs). Despite being a small fraction of the overall vehicle fleet in Finland, the contribution of HDVs towards GHG emissions is disproportionately large. European Union (EU) aims to reduce the new HDV fleets emissions to 30 percent by 2030, with Finland targeting a 50 percent reduction in transport sector emissions by 2030 and complete elimination by 2045. This study aims for the estimation of energy and power demand for electrification of HDVs in Finland, however the approach can be applied to other regions and countries as well. Utilizing traffic volume data from 376 traffic measurement system (TMS) points on Finland’s 28 main roads, the study classifies HDVs and calculates their fuel and electrical energy consumption (EEC). The results indicate a need for 4.89 TWh of annual peak energy for 100 percent electrification of HDVs, reflecting a minimum 0.614 GW power demand and requiring 1,755 chargers (each with a capacity of 350 kW at 22 h/day utilization). The analysis includes spatial mapping of energy density, energy demand, power requirements, and charging stations placement based on alternative fuels infrastructure regulations (AFIR) by EU. The obtained results can be future utilized to study local grid strength and possibility to participate in the frequency markets.

References:
[1] Bing Maps. (2024). Road Location Coordinates, 2024. https://www.bing.com/maps.
[2] Bräunl, T., Harries, D., McHenry, M., and Wager, G. (2020). Determining the optimal electric vehicle DC-charging infrastructure for Western Australia, Transportation Research Part D: Transport and Environment, 2020. 84. doi:10.1016/j.trd.2020.102250
[3] Buscariolo, F.F., Magazoni, F., Volpe, L. J.D., Maruyama, F.K., and Alves, J. C.L. (2020). Truck Trailer Aerodynamic Design Optimization through CFD Simulations, SAE Technical Paper 2019-36-0103. doi:10.4271/2019-36-0103
[4] CharIN. (2025). 2025, https://www.charin.global/media/pages/technology/knowledge-base/0c2cc2c8da-1747654352/250508_whitepaper_megawatt_charging_system_2.0.pdf.
[5] Council of European Union. (2023). REGULATION (EU) 2023/1804 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 13 September 2023 on the deployment of alternative fuels infrastructure, and repealing Directive 2014/94/EU, Official Journal of the European Union. (2023/1804):46. http://data.europa.eu/eli/reg/2023/1804/oj.
[6] Danese, A., Garau, M., Sumper, A., and Torsæter, B.N. (2021). Electrical Infrastructure Design Methodology of Dynamic and Static Charging for Heavy and Light Duty Electric Vehicles, Energies (Basel). 14(12):3362. doi:10.3390/en14123362
[7] Department for Energy Security and Net Zero. (2023). Greenhouse gas reporting: conversion factors 2023, 2023. https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2023.
[8] Dunn, D. F. R. M.T., Owens, J., Browand, F., Hammache, M., Leonard, A., Brady, M., Salari, K., Rutledge, W., Ross, J., Storms, B., Heineck, D. D. J.T., Bell, J., Walker, S., and Zilliac, G. (0). Aerodynamic drag of heavy vehicles (class 7-8): Simulation and benchmarking, SAE International, Warrendale, PA (US), United States, Jun 19, 2000. https://www.osti.gov/biblio/770966.
[9] E-mobility, A. (2025). Abb mcs1200, 2025. https://e-mobility.abb.com/en/products/heavy-duty/mcs1200. Accessed: 2025-08-11.
[10] Electrive. (2025). Tesla announces scalable 1, 2 MW charging solution for semi fleet rollout. 2025. https://www.electrive.com/2025/04/30/tesla-announces-scalable-1-2-mw-charging-solution-for-semi-fleet-rollout.
[11] European Commission Climate Action. (2023). Road transport: Reducing CO₂ emissions from vehicles, 2023. https://climate.ec.europa.eu/eu-action/transport/road-transport-reducing-co2-emissions-vehicles_en.
[12] European Environment Agency. (2022). Reducing greenhouse gas emissions from Heavy-Duty Vehicles in Europe, 2022. 15/2022. doi:10.2800/066953
[13] Eurostat. (2023). Road freight transport by vehicle characteristics, 2023. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Road_freight_transport_by_vehicle_characteristics.
[14] Eurostat. (2024). Road freight transport by type of operation and type of transport (t, tkm, vehicle-km) - annual data, 2024. doi:10.2908/ROAD_GO_TA_TOTT
[15] Fingrid. (2024). Electricity consumption in finland, 2024. https://data.fingrid.fi/en/datasets/124.
[16] Finland, S. (2022). National reference metadata in euro sdmx metadata structure (esms), 2022. https://ec.europa.eu/eurostat/cache/metadata/EN/road_go_esms_fi.htm.
[17] Finnish Government. (2022). New Climate Change Act into force in July, 2022. https://valtioneuvosto.fi/-/1410903/uusi-ilmastolaki-voimaan-heinakuussa?languageId=en_US.
[18] Fintraffic. (2023). Traffic Report, 2023. https://tie.digitraffic.fi/ui/tms/history.
[19] Fintraffic. (2024). Automatic Traffic Measurement Data (LAM), 2024. https://tie.digitraffic.fi//api/tms/v1/stations.
[20] Guo, F., Yang, J., and Lu, J. (2018). The battery charging station location problem: Impact of users’ range anxiety and distance convenience, Transportation Research Part E: Logistics and Transportation Review. 114:1--18. doi:10.1016/j.tre.2018.03.014
[21] Hall, D. and Lutsey, N. (2019). Estimating the infrastructure needs and costs for the launch of zero-emission trucks, Technical report, International Council on Clean Transportation, 2019.
[22] Hilton, G., Kiaee, M., Bryden, T., Dimitrov, B., Cruden, A., and Mortimer, A. (2018). A Stochastic Method for Prediction of the Power Demand at High Rate EV Chargers, IEEE Transactions on Transportation Electrification. 4(3):744--756. doi:10.1109/TTE.2018.2831003
[23] IEA. (2022). Advanced Motor Fuels Annual Report 2022 - The Global Situation: Finland, Technical report, International Energy Agency. https://iea-amf.org/app/webroot/files/file/Country_Task_Reports_2022_pdf/3b_Finland_final.pdf.
[24] IEA Bioenergy. (2021). Implementation of bioenergy in Finland – 2021 update, Technical report, International Energy Agency. https://www.ieabioenergy.com/wp-content/uploads/2021/11/CountryReport2021_Finland_final.pdf.
[25] InsideEVs. (2024). Tesla semi details on truck aerodynamics and drag coefficient, 2024. https://insideevs.com/news/345710/tesla-semi-details-on-truck-aerodynamics-and-drag-coefficient.
[26] Kempower. (2025). Kempower mega satellite, 2025. https://kempower.com/solution/kempower-mega-satellite. Accessed: 2025-08-11.
[27] Kolařík, J., Volná, M., Drápela, K., and Klvač, R. (2013). Fuel Consumption in Timber Haulage, Croatian journal of forest engineering. 34(2):229--240. https://doaj.org/article/c9ef3275225f42e5be537e619e297307.
[28] Liang, Z., Wang, W., and Lu, Y.-C. (2022). The path toward practical Li-air batteries, Joule. 6(11):2458--2473. doi:10.1016/j.joule.2022.10.008
[29] Liimatainen, H. and Pöllänen, M. (2010). Trends of energy efficiency in Finnish road freight transport 1995–2009 and forecast to 2016, Energy Policy. 38(12):7676--7686. doi:10.1016/j.enpol.2010.08.010
[30] Liimatainen, H., van Vliet, O., and Aplyn, D. (2019). The potential of electric trucks – An international commodity-level analysis, Applied Energy. 236:804--814. doi:10.1016/j.apenergy.2018.12.017
[31] Melliger, M.A., van Vliet, O. P.R., and Liimatainen, H. (2018). Anxiety vs reality – Sufficiency of battery electric vehicle range in Switzerland and Finland, Transportation Research Part D: Transport and Environment, 2018. 65:101--115. doi:10.1016/j.trd.2018.08.011
[32] Microsoft. (2024). Bing Maps API, 2024. https://www.bingmapsportal.com/Resources. Free-use license.
[33] Ministry of Environment, Finland. (2022). Climate Act: Finland, 2022. https://www.finlex.fi/en/laki/kaannokset/2015/en20150609_20220423.pdf.
[34] Ministry of Transport and Communications, Finland. (2013). Government's decree amending the Regulation on the use of vehicles on the road, 2013. https://www.finlex.fi/fi/laki/alkup/2013/20130407.
[35] Ministry of Transport and Communications, Finland. (2021). Roadmap to fossil-free transport : Government resolution on reducing domestic transport’s greenhouse gas emissions, Publications. (2021:19). http://urn.fi/URN:ISBN:978-952-243-604-7.
[36] Palander, T. (2017). The environmental emission efficiency of larger and heavier vehicles – A case study of road transportation in Finnish forest industry, Journal of Cleaner Production. 155:57--62. doi:10.1016/j.jclepro.2016.09.095
[37] Phoon, M. (2024). Tesla’s V4 supercharger cabinet promises up to 500 kw charging speeds with an astonishing 1, 2 MW for the tesla semi. 2024. https://ev.com/news/teslas-v4-supercharger-cabinet-promises-up-to-500-kw-charging-speeds.
[38] Ragon, P.-L. and Rodríguez, F. (2021). CO₂ emissions from trucks in the EU: An analysis of the Heavy-Duty CO₂ standards baseline data, July 2019 - June 2020, International Council on Clean Transportation, Supplement Working Paper. (2021-35):2. https://theicct.org/wp-content/uploads/2022/01/eu-hdv-co2-standards-baseline-data-supplement-sept21.pdf.
[39] Samet, M.J., Liimatainen, H., van Vliet, O. P.R., and Pöllänen, M. (2021). Road Freight Transport Electrification Potential by Using Battery Electric Trucks in Finland and Switzerland, Energies (Basel). 14(4):823. doi:10.3390/en14040823
[40] Sharp, B., Clark, N., and Lowell, D. (2013). Trailer technologies for increased Heavy-Duty Vehicle efficiency, International Council on Clean Transportation (ICCT), White paper. https://theicct.org/sites/default/files/publications/ICCT_HDVtrailertechs_20130702.pdf.
[41] Shoman, W., Yeh, S., Sprei, F., Plötz, P., and Speth, D. (2023). Battery electric long-haul trucks in europe: Public charging, energy, and power requirements, Transportation Research Part D: Transport and Environment, 2023. 121:103825. doi:10.1016/j.trd.2023.103825
[42] Siljander, R., Cederlöf, M., and Skoglund, K. (2023). Annual Climate Report 2022, Publications of the Ministry of the Environment. 2023:15:10. https://julkaisut.valtioneuvosto.fi/handle/10024/164809.
[43] Statistics Finland. (0). Statistical Data, ???? https://stat.fi/en/statistical-data.
[44] Statistics Finland. (2023). Energy consumption in transport, 2023. https://stat.fi/en/statistics/documentation/ehk' TARGET=_blank>Documentation of statistics.
[45] Statistics Finland. (2023). Greenhouse gas emissions in Finland, 1990-2022*, 2023. https://pxdata.stat.fi/PxWeb/pxweb/en/StatFin/StatFin__khki/statfin_khki_pxt_138v.px/table/tableViewLayout1.
[46] Statistics Finland. (2024). Motor Vehicle Stock, 2024. https://trafi2.stat.fi/PXWeb/pxweb/en/TraFi/TraFi__Liikennekaytossa_olevat_ajoneuvot/?tablelist=true.
[47] Söderena, P., Nylund, N.-O., Rosenblatt, D., Stokes, J., Lama, N., Cádiz, A., Takada, Y., Kobayashi, M., Lee, C.-B., and Lindgren, M. (2021). A Report from the Advanced Motor Fuels Technology Collaboration Programme on Heavy-Duty Vehicles Performance Evaluation, 2021. https://www.iea-amf.org/app/webroot/files/file/Annex%20Reports/AMF_Annex_57.pdf.
[48] Teoh, T., Kunze, O., Teo, C.-C., and Wong, Y.D. (2018). Decarbonisation of urban freight transport using electric vehicles and opportunity charging, Sustainability. 10(9):3258.
[49] Tupitsina, A., Rehtla, M., Nevaranta, N., Ahola, J., and Lindh, T. (2024). Impact of multiple flexible loads on grid stability for fast frequency reserve, In 2024 Energy Conversion Congress & Expo Europe (ECCE Europe). pages 1--7. doi:10.1109/ECCEEurope62508.2024.10751971
[50] Tuviala, E., Meriläinen, A., Hiltunen, T., Lindh, T., Kauranen, P., and Ahola, J. (2024). Simulation tool to model the levelized cost of driving of battery swapping heavy duty vehicles, In in Review. pages 1--7. doi:10.2139/ssrn.4947306
[51] Wang, Y., Bi, J., Lu, C., and Ding, C. (2020). Route guidance strategies for electric vehicles by considering stochastic charging demands in a time-varying road network, Energies. 13(9):2287.
[52] Weller, K. (2020). Emission Models for Heavy-Duty Vehicles Based on On-road Measurements, Ph.D. thesis.
BibTeX:
@article{MIC-2025-2-2,
title={{Heavy-Duty Vehicles charging infrastructure energy demand and factors affecting their placement in Finland}},
author={Rashid, Saleem and Tupitsina, Anna and Rehtla, Marek and Merilainen, Altti and Nevaranta, Niko and Ahola, Jero and Lindh, Tuomo},
journal={Modeling, Identification and Control},
volume={46},
number={2},
pages={69--88},
year={2025},
doi={10.4173/mic.2025.2.2},
publisher={Norwegian Society of Automatic Control}
};