“A model for the analysis of stomatal dynamics - applied to critical simulations of experiments on oscillatory transpiration in oat plants”

Authors: Torgny Brogårdh and Anders Johnsson,
Affiliation: NTNU
Reference: 2025, Vol 46, No 2, pp. 51-68.

Keywords: Stomatal control, hydro-active feedback, oat stomata, grass stomata, plant transpiration control, stomatal oscillations, water stress, modelling, simulation

Abstract: To explain transpiration results from experiments on stomatal oscillations in oat plants, it is shown by simulations on a model including both hydro-passive and hydro-active feedback that the model must include hydro-active control of the osmotic pressure of the subsidiary cells. Hydro-active feedback was used between the turgor pressure of the mesophyll cells, acting as sensor cells, and the osmotic contents of the subsidiary- and guard cells. In the model, a reduction of the turgor of the sensor cells results in an increase of the osmotic content of the subsidiary cells and a reduction of the osmotic content of the guard cells. Simulations showed that the hydro-active feedback to the subsidiary cells was always needed. However, it was also shown that it is an advantage to combine the hydro-active feedback to the subsidiary cells with hydro-active feedback to the guard cells. The added hydro-active feedback to the guard cells will prevent too high turgor levels in the guard cells when the stomata have closed at water stress with high light levels. The model consists of established evaporation- and plant waterflow models from literature, experimentally verified models on stomatal mechanics and new models of hydro-active feedback. The model explained results reported in experiments where the water potential of the root medium was lowered and in experiments where the potential rate of evaporation was increased.

PDF PDF (14385 Kb)        DOI: 10.4173/mic.2025.2.1

References:
[1] Barrs, H.D. (1971). Cyclic variations in stomatal aperture, transpiration, and leaf water potential under constant environmental conditions, Annual Review of Plant Biology. 22:223--236. doi:10.1146/annurev.pp.22.060171.001255
[2] Bauer, H., Ache, P., Lautner, S., Fromm, J., Hartung, W., Al-Rasheid, K., Sonnewald, S., Sonnewald, U., Kneitz, S., Lachmann, N., Mendel, R., Bittner, F., Hetherington, A., and Hedrich, R. (2013). The Stomatal Response to Reduced Relative Humidity Requires Guard Cell-Autonomous ABA Synthesis, Current Biology. 23(1):53--57. doi:10.1016/j.cub.2012.11.022
[3] Brogaardh, T., Johnsson, A.B., and Klockare, R. (1974). Oscillatory Transpiration and Water Uptake of Avena Plants, V. Influences of the Water Potential of the Root Medium. Physiologia Plantarum. 32:258--267. doi:10.1111/J.1399-3054.1974.TB03132.X
[4] Brogårdh, T. and Johnsson, A. (1973). Oscillatory transpiration and water uptake of avena plants, Physiologia Plantarum. 28(2):341--345. doi:10.1111/j.1399-3054.1973.tb01198.x
[5] Buckley, T.N. (2005). The control of stomata by water balance, New Phytologist. 168(2):275--292. doi:10.1111/j.1469-8137.2005.01543.x
[6] Buckley, T.N. (2016). Stomatal responses to humidity: has the ‘black box’ finally been opened? Plant, Cell & Environment, 39(3):482--484. doi:10.1111/pce.12651
[7] Buckley, T.N. (2019). How do stomata respond to water status? New Phytologist, 224(1):21--36. doi:10.1111/nph.15899
[8] Buckley, T.N., Mott, K.A., and Farquhar, G.D. (2003). A hydromechanical and biochemical model of stomatal conductance, Plant, Cell & Environment. 26(10):1767--1785. doi:10.1046/j.1365-3040.2003.01094.x
[9] Büchsenschütz, K., Marten, I., Becker, D., Philippar, K., Ache, P., and Hedrich, R. (2005). Differential expression of K+ channels between guard cells and subsidiary cells within the maize stomatal complex, Planta. 222(6):968--976. doi:10.1007/s00425-005-0038-6
[10] Cinquin, O. and Demongeot, J. (2002). Roles of positive and negative feedback in biological systems, Comptes Rendus Biologies. 325(11):1085--1095. doi:10.1016/S1631-0691(02)01533-0
[11] Cong, X., Li, S., and Hu, D. (2022). Stomatal dynamics: a modeling study revisiting miscellaneous experimental phenomena, Authorea. doi:10.22541/au.166852604.48579873/v1
[12] Cong, X., Li, S., and Hu, D. (2024). Stomatal aperture dynamics coupling mechanically passive and ionically active mechanisms, Plant, Cell & Environment. 47(1):106--121. doi:10.1111/pce.14726
[13] Cotelle, V. and Leonhardt, N. (2019). Chapter Four - ABA signaling in guard cells, In M.Seo and A.Marion-Poll, editors, Abscisic Acid in Plants, volume92 of Advances in Botanical Research, pages 115--170. Academic Press. doi:10.1016/bs.abr.2019.10.001
[14] Cowan, I. (1972). Oscillations in stomatal conductance and plant functioning associated with stomatal conductance: Observations and a model, Planta. 106(3):185--219. doi:10.1007/BF00388098
[15] Cui, Y., Zhao, Y., Lu, Y., Su, X., Chen, Y., Shen, Y., Lin, J., and Li, X. (2021). In vivo single-particle tracking of the aquaporin AtPIP2;1 in stomata reveals cell type-specific dynamics, Plant Physiol.. 185(4):1666:1681. doi:10.1093/plphys/kiab007
[16] Ding, L., Laurent, M.J., Milhiet, T., Aesaert, S., VanLijsebettens, M., Pauwels, L., Nelissen, H., Inzé, D., and Chaumont, F. (2024). The maize aquaporin ZmPIP1;6 enhances stomatal opening and CO2- and ABA-induced stomatal closure, Journal of Experimental Botany. 76(10):2832--2845. doi:10.1093/jxb/erae500
[17] Durney, C.H., Wilson, M.J., McGregor, S., Armand, J., Smith, R.S., Gray, J.E., Morris, R.J., and Fleming, A.J. (2023). Grasses exploit geometry to achieve improved guard cell dynamics, Current Biology. 33(13):2814--2822.e4. doi:10.1016/j.cub.2023.05.051
[18] Farquhar, G. and Cowan, I. (1974). Oscillations in stomatal conductance: the influence of environmental gain, Plant Physiol.. 54(5):769--772. doi:10.1104/pp.54.5.769
[19] Franks, P., Buckley, T., Shope, J., and Mott, K. (2001). Guard cell volume and pressure measured concurrently by confocal microscopy and the cell pressure probe, Plant Physiol.. 125(4):1577--1584. doi:10.1104/pp.125.4.1577
[20] Franks, P., Cowan, I., and Farquhar, G. (1998). A study of stomatal mechanics using the cell pressure probe, Plant, Cell & Environment. 21(1):94--100. doi:10.1046/j.1365-3040.1998.00248.x
[21] Franks, P. and Farquhar, G. (2007). The mechanical diversity of stomata and its significance in gas-exchange control, Plant Physiology. 143(1):78--87. doi:10.1104/pp.106.089367
[22] Franks, P.J. (2004). Stomatal control and hydraulic conductance, with special reference to tall trees, Tree Physiology. 24(8):865--878. doi:10.1093/treephys/24.8.865
[23] Gumowski, I. (1981). Analysis of oscillatory plant transpiration, Journal of Interdisciplinary Cycle Research. 12(4):273--291. doi:10.1080/09291018109359752
[24] Haefner, J.W., Buckley, T.N., and Mott, K.A. (1997). A spatially explicit model of patchy stomatal responses to humidity, Plant, Cell & Env.. 20(9):1087--1097. doi:10.1046/j.1365-3040.1997.d01-137.x
[25] Hopmans, P. (1971). Rhythms in stomatal opening of bean leaves, PhD Thesis, Wageningen University & Research, Netherlands. doi:10.18174/191967
[26] Jasechko, S., Sharp, Z.D., Gibson, J.J., Birks, S.J., Yi, Y., and Fawcett, P.J. (2013). Terrestrial water fluxes dominated by transpiration, Nature. 496:347--350. doi:10.1038/nature11983
[27] Johnsson, A. (2015). Oscillations in plant transpiration, In S.Mancuso and S.Shabala, editors, Rhythms in Plants: Dynamic Responses in a Dynamic Environment, pages 157--188. Springer, Cham, 2015. doi:10.1007/978-3-319-20517-5_7
[28] Kuromori, T., Seo, M., and Shinozaki, K. (2018). Aba transport and plant water stress responses, Trends in Plant Science. 23(6):513--522. doi:10.1016/j.tplants.2018.04.001
[29] Liu, L., Ashraf, M., T., M., and M., F. (2024). Stomatal closure in maize is mediated by subsidiary cells and the PAN2 receptor, New Phytol.. 241(3):1130--1143. doi:10.1111/nph.19379
[30] Majore, I., Wilhelm, B., and Marten, I. (2002). Identification of K(+) channels in the plasma membrane of maize subsidiary cells, Plant Cell Physiol.. 43(8):855--852. doi:10.1093/pcp/pcf104
[31] McAdam, S., Sussmilch, F., and Brodribb, T. (2016). Stomatal responses to vapour pressure deficit are regulated by high speed gene expression in angiosperms, Plant, Cell & Environment. 39(3):485--491. doi:10.1111/pce.12633
[32] McAdam, S. A.M. and Brodribb, T.J. (2018). Mesophyll cells are the main site of abscisic acid biosynthesis in water-stressed leaves, Plant Physiology. 177(3):911--917. doi:10.1104/pp.17.01829
[33] Mumm, P., Wolf, T., Fromm, J., Roelfsema, M., and Marten, I. (2011). Cell type-specific regulation of ion channels within the maize stomatal complex, Plant Cell Physiol.. 52(8):1365--1375. doi:10.1093/pcp/pcr082
[34] Prytz, G., Futsaether, C.M., and Johnsson, A. (2003). Thermography studies of the spatial and temporal variability in stomatal conductance of avena leaves during stable and oscillatory transpiration, New Phytologist. 158(2):249--258. doi:10.1046/j.1469-8137.2003.00741.x
[35] Raschke, K. and Fellows, M. (1971). Stomatal movement in zea mays: Shuttle of potassium and chloride between guard cells and subsidiary cells, Planta. 101(4):296--316. doi:10.1007/BF00398116
[36] Smolen, P., Baxter, D.A., and Byrne, J.H. (2001). Modeling circadian oscillations with interlocking positive and negative feedback loops, Journal of Neuroscience. 21(17):6644--6656. doi:10.1523/JNEUROSCI.21-17-06644.2001
[37] Tsai, T. Y.-C., Choi, Y.S., Ma, W., Pomerening, J.R., Tang, C., and FerrellJr, J.E. (2008). Robust, tunable biological oscillations from interlinked positive and negative feedback loops, Science. 321(5885):126--129. doi:10.1126/science.1156951
[38] Wang, G.X., Zhang, J., Liao, J.-X., and Wang, J.-L. (2001). Hydropassive evidence and effective factors in stomatal oscillations of glycyrrhiza inflata under desert conditions, Plant Science. 160(5):1007--1013. doi:10.1016/S0168-9452(01)00344-2
[39] Wolf, T., Heidelmann, T., and Marten, I. (2006). ABA Regulation of K+ -Permeable Channels in Maize Subsidiary Cells, Plant and Cell Physiology. 47(10):1372--1380. doi:10.1093/pcp/pcl007
[40] Zhang, L., Li, D., Yao, Y., and Zhang, S. (2020). H2O2, Ca2+, and K+ in subsidiary cells of maize leaves are involved in regulatory signaling of stomatal movement, Plant Physiology and Biochemistry. 152:243--251. doi:10.1016/j.plaphy.2020.04.045


BibTeX:
@article{MIC-2025-2-1,
  title={{A model for the analysis of stomatal dynamics - applied to critical simulations of experiments on oscillatory transpiration in oat plants}},
  author={Brogårdh, Torgny and Johnsson, Anders},
  journal={Modeling, Identification and Control},
  volume={46},
  number={2},
  pages={51--68},
  year={2025},
  doi={10.4173/mic.2025.2.1},
  publisher={Norwegian Society of Automatic Control}
};