“Specific Fuel Oil Consumption Models for Simulating Energy Consumption of Wellboats”

Authors: Lene Æsøy, Houxiang Zhang and Ann R. Nerheim,
Affiliation: NTNU Aalesund
Reference: 2024, Vol 45, No 1, pp. 1-14.

Keywords: Energy efficiency, aquaculture, fuel reduction, renewable energy, maritime fuel, live fish carrier

Abstract: Aquaculture is the second-largest export industry in Norway. The Norwegian Government has committed to reducing CO2 emissions by 55% by 2030 through the Paris Agreement. Wellboats are highly specialised vessels transporting and handling live fish, and one of the main contributors to CO2 emissions within the fish farming production. For the aquaculture industry to be able to maintain or increase food production within future emission limits, the implementation of novel fuel concepts and the enhancement of energy efficiency measures are essential. This study focuses on the validation of Specific Fuel Oil Consumption (SFOC) models used in simulations for assessing fuel reduction potentials. The novelty of this study was the development of SFOC models using data collected from two different engines. Further, the SFOC models were validated using data collected from a wellboat. The aim was to obtain a validated model that can be used to evaluate the fuel reduction potential of alternative engine configurations in existing vessels. Two SFOC models were developed and tested against operational vessel data in simulations. The simulation results were compared and validated against measured onboard fuel consumption data. Findings showed that the SFOC models gave satisfactory results in fuel consumption prediction. Thus, the model can predict fuel consumption for various engine sizes and configurations onboard the vessel. If included in a power management system, the SFOC models could give real-time recommendations for fuel consumption reduction for wellboats.

PDF PDF (3377 Kb)        DOI: 10.4173/mic.2024.1.1

References:
[1] BunkerOil. (0). MGO, n.d. https://www.bunkeroil.no/no/kategori/mgo. Date accessed: 2023-10-26.
[2] Cluster, B.M. (2022). Maritime Industry to cut 50% GHG - Blue Maritime Cluster, 2022. https://www.bluemaritimecluster.no/gce/news/news/maritime-industry-to-cut-50-ghg/.
[3] Dedes, E.K., Hudson, D.A., and Turnock, S.R. (2012). Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping, Energy Policy. 40:204--218. doi:10.1016/j.enpol.2011.09.046
[4] DNV. (2021). Marine Aquaculture Forecast to 2050 DNV, Technical report. https://www.dnv.com/Publications/marine-aquaculture-forecast-to-2050-202391.
[5] Doundoulakis, E. and Papaefthimiou, S. (2022). A comparative methodological approach for the calculation of ships air emissions and fuel-energy consumption in two major Greek ports, Maritime Policy & Management. 49(8):1135--1154. doi:10.1080/03088839.2021.1946610
[6] Fan, A., Yang, J., Yang, L., Wu, D., and Vladimir, N. (2022). A review of ship fuel consumption models, Ocean Engineering. 264:112405. doi:10.1016/j.oceaneng.2022.112405
[7] Ghimire, P., Zadeh, M., Thorstensen, J., and Pedersen, E. (2022). Data-Driven Efficiency Modeling and Analysis of All-Electric Ship Powertrain: A Comparison of Power System Architectures, IEEE Transactions on Transportation Electrification. 8(2):1930--1943. doi:10.1109/TTE.2021.3123886
[8] Henry, M.P., Clarke, D.W., Archer, N., Bowles, J., Leahy, M.J., Liu, R.P., Vignos, J., and Zhou, F.B. (2000). A self-validating digital Coriolis mass-flow meter: an overview, Control Engineering Practice. 8(5):487--506. doi:10.1016/S0967-0661(99)00177-X
[9] IMO, I. (2018). Initial IMO GHG Strategy, 2018. https://www.imo.org/en/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gas-emissions-from-ships.aspx.
[10] Industri, N. (2016). SUMMARY: ROADMAP FOR THE AQUACULTURE INDUSTRY, Technical report. https://www.norskindustri.no/siteassets/dokumenter/rapporter-og-brosjyrer/veikart-for-havbruksnaringen---kortversjon_eng.pdf.
[11] ISO, J. (2015). ISO 15016:2015(en), Ships and marine technology — Guidelines for the assessment of speed and power performance by analysis of speed trial data, 2015. https://www.iso.org/obp/ui/en/#iso:std:61902:en.
[12] Kim, K.-S. and Roh, M.-I. (2020). ISO 15016:2015-Based Method for Estimating the Fuel Oil Consumption of a Ship, Journal of Marine Science and Engineering. 8(10):791. doi:10.3390/jmse8100791
[13] Law, A.M. (2022). How to Build Valid and Credible Simulation Models, In 2022 Winter Simulation Conference (WSC). pages 1283--1295. doi:10.1109/WSC57314.2022.10015411
[14] Lu, R., Turan, O., Boulougouris, E., Banks, C., and Incecik, A. (2015). A semi-empirical ship operational performance prediction model for voyage optimization towards energy efficient shipping, Ocean Engineering. 110:18--28. doi:10.1016/j.oceaneng.2015.07.042
[15] Mair, G.C., Halwart, M., Derun, Y., and Costa-Pierce, B.A. (2023). A decadal outlook for global aquaculture, Journal of the World Aquaculture Society. 54(2):196--205. doi:10.1111/jwas.12977
[16] Miljødirektoratet, t. D. f. t.E. (2023). Miljømål 5, 2. 2023. https://miljostatus.miljodirektoratet.no/miljomal/klima/miljomal-5.2.
[17] Mylonopoulos, F., Polinder, H., and Coraddu, A. (2023). A Comprehensive Review of Modeling and Optimization Methods for Ship Energy Systems, IEEE Access. 11:32697--32707. doi:10.1109/ACCESS.2023.3263719
[18] NHO. (2022). Green Shipping Challenge, 2022. https://www.nho.no/tema/energi-miljo-og-klima/artikler/green-shipping-challenge/.
[19] Nogva. (0). Engine data sheet on 4045TFM50, n.d. http://www.nogva.no/en/products/auxiliary/john-deere/4045tfm50, Publisher: Nogva Motorfabrikk AS, Date accessed: 2022-02-09.
[20] Regjeringen, K.-o. M.d. (2022). Prop, 1 S (2022 –2023) (Proposisjon til Stortinget (forslag til stortingsvedtak)). 2022. https://www.regjeringen.no/no/dokumenter/prop.-1-s-20222023/id2930910/.
[21] Regjeringen, N. M. o. C. a.E. (2021). Norway’s Climate Action Plan for 2021–2030 Meld, St. 13 (2020–2021) Report to the Storting (white paper). 2021. https://www.regjeringen.no/contentassets/a78ecf5ad2344fa5ae4a394412ef8975/en-gb/pdfs/stm202020210013000engpdfs.pdf.
[22] StakeholdersAS and ZeroKyst. (2022). Kartlegging av utslipp fra fiskeri og havbruk i Norge, 2022. https://zerokyst.no/wp-content/uploads/2022/08/Rapport-endelig-ZeroKyst-juni-2022.pdf.
[23] Sølvtrans. (2023). Fleet, 2023. https://www.solvtrans.no/fleet.
[24] UN, U.N. (2015). The Paris Agreement, UNFCCC, 2015. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement.
[25] Winther, U., Hognes, E.S., Jafarzadeh, S., and Ziegler, F. (2020). Greenhouse gas emissions of Norwegian seafood products in 2017, 2020. page 116. https://www.sintef.no/contentassets/25338e561f1a4270a59ce25bcbc926a2/report-carbon-footprint-norwegian-seafood-products-2017_final_040620.pdf/.
[26] Æsøy, L., Piehl, H., and Nerheim, A.R. (2022). System Simulation-Based Feasibility and Performance Study of Alternative Fuel Concepts for Aquaculture Wellboats, In Volume 4: Ocean Space Utilization. American Society of Mechanical Engineers, Hamburg, Germany, page V004T05A006. doi:10.1115/OMAE2022-81106
[27] Æsøy, L., Piehl, H., and Nerheim, A.R. (2023). Energy consumption and operational profile of a wellboat—Analysis of a field study, Ocean Engineering. 289:116239. doi:10.1016/j.oceaneng.2023.116239


BibTeX:
@article{MIC-2024-1-1,
  title={{Specific Fuel Oil Consumption Models for Simulating Energy Consumption of Wellboats}},
  author={Æsøy, Lene and Zhang, Houxiang and Nerheim, Ann R.},
  journal={Modeling, Identification and Control},
  volume={45},
  number={1},
  pages={1--14},
  year={2024},
  doi={10.4173/mic.2024.1.1},
  publisher={Norwegian Society of Automatic Control}
};