“Modeling and Analysis of Physical Human-Robot Interaction of an Upper Body Exoskeleton in Assistive Applications”

Authors: Simon Christensen, Xuerong Li and Shaoping Bai,
Affiliation: Aalborg University
Reference: 2021, Vol 42, No 4, pp. 159-172.

Keywords: Physical Human-Robot Interaction, Biomechanical Modeling, Assistive Exoskeleton, Energy Exchange in pHRI, Overhead Reaching Tasks

Abstract: Portable exoskeletons can be used to assist elderly or disabled people in their daily activities. The physical human-robot interaction is a major concern in exoskeleton development for both functioning properly and interacting safely and comfortably. Using a model of the human musculoskeletal system and the exoskeleton can help better understanding, estimating and analyzing the physical human-robot interaction. In this paper, a model comprising the biomechanics of human upper body and the dynamics of a 4-DoF exoskeleton, named UB-AXO, is developed and used to study the physical human-robot interaction. The human-exoskeleton model is able to estimate effect of physical human-exoskeleton interaction, such as muscle activity, and energy consumption and human joint reaction forces, when performing cooperative motions with the exoskeleton. The model development is described and subsequently two simulation studies of typical activities of daily living are conducted to analyze and evaluate the performance of the UB-AXO. The simulation results demonstrate that the UB-AXO is able to reduce muscle loading and energy consumption, while maintaining a safe physical human-exoskeleton interaction.

PDF PDF (4228 Kb)        DOI: 10.4173/mic.2021.4.2

DOI forward links to this article:
[1] David Scherb, Sandro Wartzack and Jorg Miehling (2023), doi:10.3389/fbioe.2022.1044275
[1] Agarwal, P., Neptune, R.R., and Deshpande, A.D. (2016). A simulation framework for virtual prototyping of robotic exoskeletons, Journal of Biomechanical Engineering. 138(6):061004. doi:10.1115/1.4033177
[2] Bai, S. and Rasmussen, J. (2011). Modelling of physical human-robot interaction for exoskeleton designs, Proc. of Multibody Dynamics 2011, ECCOMAS Thematic Conference, 2011. (July):1--7.
[3] Bai, S., Virk, G.S., and Sugar, T.G. (2018). Wearable exoskeleton systems: Design, control and applications, volume 108, Control, Robotics and Sensors.
[4] Bhargava, L.J., Pandy, M.G., and Anderson, F.C. (2004). A phenomenological model for estimating metabolic energy consumption in muscle contraction, Journal of Biomechanics. 37(1):81--88. doi:10.1016/S0021-9290(03)00239-2
[5] Bicchi, A., Peshkin, M.A., and Colgate, J.E. (2008). Safety for physical human--robot interaction, Springer Berlin Heidelberg, Berlin, Heidelberg. doi:10.1007/978-3-540-30301-5_58
[6] Bock, S.D., Ghillebert, J., Govaerts, R., Elprama, S.A., Marusic, U., Serrien, B., Jacobs, A., Geeroms, J., Meeusen, R., and Pauw, K.D. (2021). Passive shoulder exoskeletons: more effective in the lab than in the field? IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29:173--183. doi:10.1109/TNSRE.2020.3041906
[7] Christensen, S. and Bai, S. (2018). Kinematic analysis and design of a novel shoulder exoskeleton using a double parallelogram linkage, Journal of Mechanisms and Robotics. 10(4). doi:10.1115/1.4040132
[8] Davis, K.G., Reid, C.R., Rempel, D.D., and Treaster, D. (2020). Introduction to the human factors special issue on user-centered design for exoskeleton, Human Factors. 62(3):333--336. doi:10.1177/0018720820914312
[9] De Santis, A., Siciliano, B., De Luca, A., and Bicchi, A. (2008). An atlas of physical human–robot interaction, Mechanism and Machine Theory. 43(3):253--270. doi:10.1016/j.mechmachtheory.2007.03.003
[10] Farasyn, A. and Meeusen, R. (2003). Pressure pain thresholds in healthy subjects: influence of physical activity, history of lower back pain factors and the use of endermology as a placebo-like treatment, Journal of Bodywork and Movement Therapies. 7(1):53--61. doi:10.1016/S1360-8592(02)00050-5
[11] Gopura, R., Bandara, D., Kiguchi, K., and Mann, G. (2016). Developments in hardware systems of active upper-limb exoskeleton robots: A review, Robotics and Autonomous Systems. 75:203--220. doi:10.1016/j.robot.2015.10.001
[12] Gull, M.A., Bai, S., and Bak, T. (2020). A review on design of upper limb exoskeletons, Robotics. 9(1). doi:10.3390/robotics9010016
[13] Heinzmann, J. and Zelinsky, A. (2003). Quantitative safety guarantees for physical human-robot interaction, The International Journal of Robotics Research. 22(7-8):479--504. doi:10.1177/02783649030227004
[14] L. Pons, J. (2008). Wearable robots: biomechatronic exoskeletons, Wiley.
[15] Lyder, C.H. (2003). Pressure ulcer prevention and management, JAMA. 289(2):223--226. doi:10.1001/jama.289.2.223
[16] Narayanan, M., Kannan, S., Mendel, F., and Krovi, V. (2009). Case studies of musculoskeletal-simulation-based rehabilitation program evaluation, IEEE Transtions on Robotics. 25(3):634--638. doi:10.1109/TRO.2009.2019780
[17] Näf, M.B., Junius, K., Rossini, M., Rodriguez-Guerrero, C., Vanderborght, B., and Lefeber, D. (2019). Misalignment compensation for full human-exoskeleton kinematic compatibility: State of the art and evaluation, Applied Mechanics Reviews. 70(5). doi:10.1115/1.4042523
[18] Pacifico, I., Scano, A., Guanziroli, E., Moise, M., Morelli, L., Chiavenna, A., Romo, D., Spada, S., Colombina, G., Molteni, F., Giovacchini, F., Vitiello, N., and Crea, S. (2020). An experimental evaluation of the proto-MATE: A novel ergonomic upper-limb exoskeleton to reduce workers' physical strain, IEEE Robotics Automation Magazine. 27(1):54--65. doi:10.1109/MRA.2019.2954105
[19] Peebles, L. and Norris, B. (1999). Adultdata: The handbook of adult anthropometric and strength measurements: Data for design safety, Government consumer safety research. Department of Trade and Industry. doi:10.1177/106480469900700310
[20] Rasmussen, J., Damsgaard, M., and Voigt, M. (2001). Muscle recruitment by the min/max criterion — a comparative numerical study, Journal of Biomechanics. 34(3):409--415. doi:10.1016/S0021-9290(00)00191-3
[21] Rowe, M.F. (2020). Safety measures for conducting exercise oxygen consumption, VO2, tests in developing countries, Tropical Doctor. 50(3):280--281. doi:10.1177/0049475520918033
[22] Schiele, A. (2008). An explicit model to predict and interpret constraint force creation in pHRI with exoskeletons, In 2008 IEEE International Conference on Robotics and Automation. pages 1324--1330. doi:10.1109/ROBOT.2008.4543387
[23] Schiele, A. and vander Helm, F. C.T. (2006). Kinematic design to improve ergonomics in human machine interaction, IEEE Transactions on Neural Systems and Rehabilitation Engineering. 14(4):456--469. doi:10.1109/TNSRE.2006.881565
[24] Skals, S., Jung, M.K., Damsgaard, M., and Andersen, M.S. (2016). Prediction of ground reaction forces and moments during sports-related movements, Multibody System Dynamics. 39(3):175--195. doi:10.1007/s11044-016-9537-4
[25] Sylla, N., Bonnet, V., Colledani, F., and Fraisse, P. (2014). Ergonomic contribution of ABLE exoskeleton in automotive industry, International Journal of Industrial Ergonomics. 44(4):475--481. doi:10.1016/j.ergon.2014.03.008
[26] Winter, D.A. (2008). Biomechanics and Motor Control of Human Movement, JOHN WILEY & SONS, INC., Hoboken, New Jersey. doi:10.1002/9780470549148
[27] Zhou, L., Bai, S., Andersen, M.S., and Rasmussen, J. (2015). Modeling and design of a spring-loaded, cable-driven, wearable exoskeleton for the upper extremity, Modeling, Identification and Control. 36(3):167--177. doi:10.4173/mic.2015.3.4
[28] Zhou, L., Li, Y., and Bai, S. (2017). A human-centered design optimization approach for robotic exoskeletons through biomechanical simulation, Robotics and Autonomous Systems. 91:337--347. doi:10.1016/j.robot.2016.12.012

  title={{Modeling and Analysis of Physical Human-Robot Interaction of an Upper Body Exoskeleton in Assistive Applications}},
  author={Christensen, Simon and Li, Xuerong and Bai, Shaoping},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}