“Simulation tool for dimensioning power train of hybrid working machine”

Authors: Anna Tupitsina, Jan-Henri Montonen, Jani Alho, Paula Immonen, Mika Lauren, Pia Lindh and Tuomo Lindh,
Affiliation: Lappeenranta University of Technology and Turku University of Applied Sciences
Reference: 2021, Vol 42, No 4, pp. 143-158.

Keywords: Hybrid working machine, power train, simulation tool

Abstract: The tightening of emission standards and related regulations leads to the necessity of the hybridization of mobile machines. The working operation profile of non-road machinery differs for diverse application types and often varies on large scale. Since the series production of mobile vehicles is generally relatively limited, their design can be tailored to a specific driving cycle. Therefore, this work aims to introduce a simulation tool, which is flexible for the initial design of a non-road hybrid electric vehicle (HEV) drivetrain when different architectures (series and parallel) and dimension of components are considered. The dimensioning is based on the load cycles, that describe the power of the machine during the operational process. For the ease of the first design, each component is modeled mainly using the data available from manufacturers. Case studies are provided to illustrate the use of the simulation tool, where different options of the dimensioned hybrid powertrain are considered.

PDF PDF (1285 Kb)        DOI: 10.4173/mic.2021.4.1

DOI forward links to this article:
[1] Mika Lauren, Giota Goswami, Anna Tupitsina, Suraj Jaiswal, Tuomo Lindh and Jussi Sopanen (2021), doi:10.3390/machines10010026
References:
[1] Aarniovuori, L., Niemelä, M., Pyrhönen, J., Cao, W., and Agamloh, E.B. (2018). Loss components and performance of modern induction motors, In 2018 XIII International Conference on Electrical Machines (ICEM). pages 1253--1259. doi:10.1109/ICELMACH.2018.8507189
[2] ABB. (2021). ABB Library, Accessed September. 24, 2021 [Onl.
[3] AGCO. (2008). AGCO SISU Power, 3rd generation series, 4-cylinder diesel engine, .
[4] Altairnano. (2021). 70 amp hour cell, Accessed July. 17, 2021 [Onl.
[5] Burke, A.F. (2007). Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles, Proceedings of the IEEE. 95(4):806--820. doi:10.1109/JPROC.2007.892490
[6] Ceraolo, M., Lutzemberger, G., and Poli, D. (2017). State-of-charge evaluation of supercapacitors, Journal of Energy Storage. 11:211--218. doi:10.1016/j.est.2017.03.001
[7] Ding, Y., Cano, Z.P., Yu, A., Lu, J., and Chen, Z. (2019). Automotive li-ion batteries: Current status and future perspectives, Electrochemical Energy Reviews. 2:1--28. doi:10.1007/s41918-018-0022-z
[8] DLG. (2013). DLG-Powermix, Accessed September. 15, 2021 [Onl.
[9] Doppelbauer, M. (2020). Overview interpolation/extrapolation in fieldweakening range and overload range for electrical machines, lecture notes, Karlsruhe Institute of Technology (KIT), Germany.
[10] Eaton. (2019). Xlr-48 supercapacitor, Accessed July. 17, 2021 [Onl.
[11] Ehsani, M., Gao, Y., Gay, S., and Emadi, A. (2004). Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, CRC Press LLC. doi:10.1201/9781420037739
[12] Enang, W. and Bannister, C. (2017). Modelling and control of hybrid electric vehicles (a comprehensive review), Renewable and Sustainable Energy Reviews. 74:1210--1239. doi:10.1016/j.rser.2017.01.075
[13] EPA. (2021). EPA nonregulatory nonroad duty cycles, Environmental Protection Agency,Accessed Sep. 17, 2021 [Onl.
[14] Evangelou, S. and Shabbir, W. (2016). Dynamic modeling platform for series hybrid electric vehicles, IFAC-PapersOnLine. 49:533--540. doi:10.1016/j.ifacol.2016.08.078
[15] Gao, D.W., Mi, C., and Emadi, A. (2007). Modeling and simulation of electric and hybrid vehicles, Proceedings of the IEEE. 95(4):729--745. doi:10.1109/JPROC.2006.890127
[16] He, X. and Jiang, Y. (2018). Review of hybrid electric systems for construction machinery, Automation in Construction. 92:286--296. doi:10.1016/j.autcon.2018.04.005
[17] Heywood, J.B. (1988). Internal Combustion Engine Fundamentals, McGraw-Hill, Inc.
[18] Hiereth, H. and Prenninger, P. (2003). Charging the Internal Combustion Engine, Springer.
[19] Huang, Y., Wang, H., Khajepour, A., Li, B., Ji, J., Zhao, K., and Hu, C. (2018). A review of power management strategies and component sizing methods for hybrid vehicles, Renewable and Sustainable Energy Reviews. 96:132--144. doi:10.1016/j.rser.2018.07.020
[20] ICCT. (2016). European stage V non-road emission standars, The International Council on clean transportation. https://theicct.org/sites/default/files/publications/EU-Stage-V_policym%20update_ICCT_nov2016.pdf.
[21] Immonen, P. (2013). Energy Efficiency of a Diesel-Electric Mobile Working Machine, Ph.D. thesis, Lappeenranta University of Technology.
[22] Ishida, K. and Higurashi, M. (2015). Hybrid wheel loaders incorporating power electronics, Hitachi Review. 64(7):41--45.
[23] Johnson, V.H., Wipke, K., and Rausen, D. (2000). HEV control strategy for real-time optimization of fuel economy and emissions, SAE transactions. 109:1677--1690. doi:10.4271/2000-01-1543
[24] Keel-Blackmon, K., Curran, S., and Lapsa, M. (2016). Summary of OEM idling recommendations from vehicle owner’s manuals, Technical report, OAK RIDGE NATIONAL LABORATORY.
[25] Lajunen, A., Sainio, P., Laurila, L., Pippuri-Mäkeläinen, J., and Tammi, K. (2018). Overview of powertrain electrification and future scenarios for non-road mobile machinery, Energies. 11(5). doi:10.3390/en11051184
[26] Lajunen, A., Suomela, J., Pippuri, J., Tammi, K., Lehmuspelto, T., and Sainio, P. (2016). Electric and hybrid electric non-road mobile machinery – present situation and future trends, World Electric Vehicle Journal. 8(1):172--183. doi:10.3390/wevj8010172
[27] Lauren, M., Goswami, G., Tupitsina, A., Jaiswal, S., Lindh, T., and Sopanen, J. (0). General purpose and scalable internal combustion engine model for energy efficiency studies, Manuscript submitted for publication, -.
[28] Li, L., Zhang, Y., and Yang, C. (2016). Model predictive control-based efficient energy recovery control strategy for regenerative braking system of hybrid electric bus, Energy Conversion and Management. 111:1--15. doi:10.1016/j.enconman.2015.12.077
[29] Lindgren, M. (2005). A transient fuel consumption model for non-road mobile machinery, Biosystems Engineering. 91(2):139--147. doi:10.1016/j.biosystemseng.2005.03.011
[30] Lindh, T. (2013). Simulation, modeling, and virtual testing of electric-drive-powered mechatronic systems, In 2013 International Conference-Workshop Compatibility And Power Electronics. pages 219--224. doi:10.1109/CPE.2013.6601158
[31] Lindh, T., Montonen, J.-H., Niemelä, M., Nokka, J., Laurila, L., and Pyrhönen, J. (2014). Dynamic performance of mechanical-level hardware-in-the-loop simulation, In 2014 16th European Conference on Power Electronics and Applications. pages 1--10. doi:10.1109/EPE.2014.6911000
[32] Lindh, T. and Nevaranta, N. (2020). Automatized method of moments to estimate process model of diesel engine dynamics, In 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), volume1. pages 1201--1204, 2020. doi:10.1109/ETFA46521.2020.9211945
[33] Markel, T., Brooker, A., Hendricks, T., Johnson, V., Kelly, K., Kramer, B., O’Keefe, M., Sprik, S., and Wipke, K. (2002). Advisor: a systems analysis tool for advanced vehicle modeling, Journal of Power Sources. 110(2):255--266. doi:10.1016/S0378-7753(02)00189-1
[34] Mocera, F. and Somà, A. (2020). Analysis of a parallel hybrid electric tractor for agricultural applications, Energies. 13(12). doi:10.3390/en13123055
[35] Montonen, J., Montonen, J.-H., Immonen, P., Murashko, K., Ponomarev, P., Tuomo, Lindh, P., Laurila, L., and Pyrhönen, J. (2012). Electric drive dimensioning for a hybrid working machine by using virtual prototyping, In 2012 XXth International Conference on Electrical Machines. pages 921--927. doi:10.1109/ICElMach.2012.6349986
[36] Montonen, J.-H. and Lindh, T. (2014). Analysis of sensorless traction control system for electric vehicle, In 2014 16th European Conference on Power Electronics and Applications. pages 1--7. doi:10.1109/EPE.2014.6911006
[37] Moreda, G., Muñoz-García, M., and Barreiro, P. (2016). High voltage electrification of tractor and agricultural machinery – a review, Energy Conversion and Management. 115:117--131. doi:10.1016/j.enconman.2016.02.018
[38] Nokka, J. (2018). Energy Efficiency Analyses of hybrid non-road mobile machinery by real-time virtual prototyping, Ph.D. thesis, Lappeenranta University of Technology.
[39] Nokka, J., Laurila, L., and Pyrhönen, J. (2017). Virtual simulation-based underground loader hybridization study - comparative fuel consumption and productivity analysis, International Review on Modelling and Simulations (IREMOS), 2017. 10(4). doi:10.15866/iremos.v10i4.12130
[40] Ottosson, J. (2007). Energy Management and Control of Electrical Drives in Hybrid Electrical Vehicles, Ph.D. thesis, Lund University, Sweden.
[41] Pisu, P. and Rizzoni, G. (2007). A comparative study of supervisory control strategies for hybrid electric vehicles, IEEE Transactions on Control Systems Technology. 15(3):506--518. doi:10.1109/TCST.2007.894649
[42] Polichronis, D., Evaggelos, R., Alcibiades, G., Gasparakis, E., and Apostolos, P. (2013). Turbocharger lubrication - lubricant behavior and factors that cause turbocharger failure, International Journal of Automotive Engineering and Technologies. 2:40--54.
[43] Rizzoni, G., Guzzella, L., and Baumann, B. (1999). Unified modeling of hybrid electric vehicle drivetrains, IEEE/ASME Transactions on Mechatronics. 4(3):246--257. doi:10.1109/3516.789683
[44] Rundo, M. (2015). Lubrication pumps for internal combustion engines: a review, International Journal of Fluid Power. 16:59--74. doi:10.1080/14399776.2015.1050935
[45] Scania. (0). Scania industrial engines dc09 084a, Accessed June. 15, 2021 [Onl.
[46] Shabbir, W. and Evangelou, S.A. (2016). Exclusive operation strategy for the supervisory control of series hybrid electric vehicles, IEEE Transactions on Control Systems Technology. 24(6):2190--2198. doi:10.1109/TCST.2016.2520904
[47] Tammi, K., Minav, T., and Kortelainen, J. (2018). Thirty years of electro-hybrid powertrain simulation, IEEE Access. 6:35250--35259. doi:10.1109/ACCESS.2018.2850916
[48] Tremblay, O. and Dessaint, L.A. (2009). Experimental validation of a battery dynamic model for ev applications, World Electric Vehicle Journal. 3:289--298. doi:10.3390/wevj3020289
[49] Wang, J., Yang, Z., Liu, S., Zhang, Q., and Han, Y. (2016). A comprehensive overview of hybrid construction machinery, Advances in Mechanical Engineering. 8. doi:10.1177/1687814016636809
[50] Winke, F. (2019). Transient Effects in Simulations of Hybrid Electric Drivetrains, Transient Effects in Simulations of Hybrid Electric Drivetrains. Springer Fachmedien Wiesbaden GmbH, part of Springer Nature. doi:10.1007/978-3-658-22554-4


BibTeX:
@article{MIC-2021-4-1,
  title={{Simulation tool for dimensioning power train of hybrid working machine}},
  author={Tupitsina, Anna and Montonen, Jan-Henri and Alho, Jani and Immonen, Paula and Lauren, Mika and Lindh, Pia and Lindh, Tuomo},
  journal={Modeling, Identification and Control},
  volume={42},
  number={4},
  pages={143--158},
  year={2021},
  doi={10.4173/mic.2021.4.1},
  publisher={Norwegian Society of Automatic Control}
};