“Development of 3D Anti-Swing Control for Hydraulic Knuckle Boom Crane”

Authors: Konrad J. Jensen, Morten K. Ebbesen and Michael R. Hansen,
Affiliation: University of Agder
Reference: 2021, Vol 42, No 3, pp. 113-129.

Keywords: Loader crane; Anti-swing; Hydraulics; Kinematics; Feedforward; Pressure feedback

Abstract: In this paper, 3D anti-swing control for a hydraulic loader crane is presented. The difference between hydraulic and electric cranes are discussed to show the challenges associated with hydraulic actuation. The hanging load dynamics and relevant kinematics of the crane are derived to model the system and create the 3D anti-swing controller. The anti-swing controller generates a set of tool point velocities which are added to the electro-hydraulic motion controller via feedforward. A dynamic simulation model of the crane is made, and the control system is evaluated in simulations with a path controller in actuator space. Simulation results show significant reduction in the load swing angles during motion using the proposed anti-swing controller in addition to pressure feedback. Experiments are carried out to verify the performance of the anti-swing controller. Results show that the implemented pressure feedback is crucial for reaching stability, and with it the control system yields good suppression of the swing angles in practice.

PDF PDF (4137 Kb)        DOI: 10.4173/mic.2021.3.2

DOI forward links to this article:
[1] Konrad Johan Jensen, Morten Kjeld Ebbesen and Michael Rygaard Hansen (2022), doi:10.3390/robotics11020034
References:
[1] Ambrosino, M., Dawans, A., Thierens, B., and Garone, E. (2020). Oscillation reduction for knuckle cranes, In Proceedings of the 37th International Symposium on Automation and Robotics in Construction (ISARC). International Association for Automation and Robotics in Construction (IAARC), Kitakyushu, Japan, pages 1590--1597. doi:10.22260/ISARC2020/0221
[2] Bak, M.K. and Hansen, M.R. (2013). Analysis of offshore knuckle boom crane — part two: Motion control, Modeling, Identification and Control. 34(4):175--181. doi:10.4173/mic.2013.4.2
[3] Boschetti, G., Caracciolo, R., Richiedei, D., and Trevisani, A. (2014). A non-time based controller for load swing damping and path-tracking in robotic cranes, Journal of Intelligent & Robotic Systems. 76(2):201--217. doi:10.1007/s10846-014-0036-7
[4] Boschetti, G., Richiedei, D., and Trevisani, A. (2011). Delayed reference control for multi-degree-of-freedom elastic systems: Theory and experimentation, Control Engineering Practice. 19(9):1044 -- 1055. doi:10.1016/j.conengprac.2011.05.006
[5] Cho, S.-K. and Lee, H.-H. (2002). A fuzzy-logic antiswing controller for three-dimensional overhead cranes, ISA Transactions. 41(2):235 -- 243. doi:10.1016/S0019-0578(07)60083-4
[6] Fang, Y., Dixon, W.E., Dawson, D.M., and Zergeroglu, E. (2003). Nonlinear coupling control laws for an underactuated overhead crane system, IEEE/ASME Transactions on Mechatronics. 8(3):418--423. doi:10.1109/TMECH.2003.816822
[7] Hagen, D., Padovani, D., and Choux, M. (2019). Design and implementation of pressure feedback for loadcarrying applications with position control, In Proceedings of the Sixteenth Scandinavian International Conference on Fluid Power. Tampere, Finland.
[8] Ho-Hoon Lee and Seung-Gap Choi. (2001). A model-based anti-swing control of overhead cranes with high hoisting speeds, In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), volume3. pages 2547--2552 vol.3. doi:10.1109/ROBOT.2001.933006
[9] Ho-Hoon Lee and Sung-Kun Cho. (2001). A new fuzzy-logic anti-swing control for industrial three-dimensional overhead cranes, In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), volume3. pages 2956--2961 vol.3. doi:10.1109/ROBOT.2001.933070
[10] Jensen, K.J., Ebbesen, M.K., and Hansen, M.R. (2020). Adaptive feedforward control of a pressure compensated differential cylinder, Applied Sciences, 2020. 10(21):7847. doi:10.3390/app10217847
[11] Jensen, K.J., Ebbesen, M.K., and Hansen, M.R. (2021). Anti-swing control of a hydraulic loader crane with a hanging load, Mechatronics. 77:102599. doi:10.1016/j.mechatronics.2021.102599
[12] Jensen, K.J., Kjeld Ebbesen, M., and Rygaard Hansen, M. (2020). Development of point-to-point path control in actuator space for hydraulic knuckle boom crane, Actuators, 2020. 9(2):27. doi:10.3390/act9020027
[13] Kjelland, M.B. and Hansen, M.R. (2015). Using input shaping and pressure feedback to suppress oscillations in slewing motion of lightweight flexible hydraulic crane, International Journal of Fluid Power. 16(3):141--148. doi:10.1080/14399776.2015.1089071
[14] Kjelland, M.B., Hansen, M.R., Tyapin, I., and Hovland, G. (2012). Tool-point control of a planar hydraulically actuated manipulator with compensation of non-actuated degree of freedom, In 2012 12th International Conference on Control, Automation and Systems. pages 672--677.
[15] Kjelland, M.B., Tyapin, I., Hovland, G., and Hansen, M.R. (2012). Tool-point control for a redundant heave compensated hydraulic manipulator, Proceedings of the 2012 IFAC Workshop on Automatic Control in Offshore Oil and Gas Production, Norwegian University of Science and Technology, Trondheim, Norway. doi:10.3182/20120531-2-NO-4020.00034
[16] Lee, H.-H. (1998). Modeling and Control of a Three-Dimensional Overhead Crane, Journal of Dynamic Systems, Measurement, and Control. 120(4):471--476. doi:10.1115/1.2801488
[17] Lee, H.-H. (2003). A new approach for the anti-swing control of overhead cranes with high-speed load hoisting, International Journal of Control. 76(15):1493--1499. doi:10.1080/00207170310001604954
[18] Lee, H.-H. (2004). A new design approach for the anti-swing trajectory control of overhead cranes with high-speed hoisting, International Journal of Control. 77(10):931--940. doi:10.1080/00207170412331270550
[19] Lee, H.-H., Cho, S.-K., and Cho, J.-S. (1997). A new anti-swing control of overhead cranes, IFAC Proceedings Volumes. 30(13):115 -- 120. IFAC Workshop on Automation in the Steel Industry: Current Practice and Future Developments (ASI'97), Kyongju, Korea, 16-18 July 1997. doi:10.1016/S1474-6670(17)44380-1
[20] Lee, H.-H. and Liang, Y. (2010). A Robust Anti-Swing Trajectory Control of Overhead Cranes With High-Speed Load Hoisting: Experimental Study, 2010. Volume 8: Dynamic Systems and Control, Parts A and B:711--716. doi:10.1115/IMECE2010-39708
[21] Lee, H.-H., Liang, Y., and Segura, D. (2006). A Sliding-Mode Antiswing Trajectory Control for Overhead Cranes With High-Speed Load Hoisting, Journal of Dynamic Systems, Measurement, and Control. 128(4):842--845. doi:10.1115/1.2364010
[22] Ngo, Q.H. and Hong, K. (2012). Sliding-mode antisway control of an offshore container crane, IEEE/ASME Transactions on Mechatronics. 17(2):201--209. doi:10.1109/TMECH.2010.2093907
[23] Park, H., Chwa, D., and Hong, K.-S. (2007). A feedback linearization control of container cranes: Varying rope length, International Journal of Control, Automation, and Systems, 2007. 5.
[24] Park, M., Chwa, D., and Hong, S. (2008). Antisway tracking control of overhead cranes with system uncertainty and actuator nonlinearity using an adaptive fuzzy sliding-mode control, IEEE Transactions on Industrial Electronics. 55(11):3972--3984. doi:10.1109/TIE.2008.2004385
[25] Pedersen, H.C. and Andersen, T.O. (2018). Pressure feedback in fluid power systems—active damping explained and exemplified, IEEE Transactions on Control Systems Technology. 26(1):102--113. doi:10.1109/TCST.2017.2650680
[26] Pedersen, H.C., Andersen, T.O., and Hansen, M.R. (2016). Guidelines for properly adjusting pressure feedback in systems with over-centre valves, In Proceedings of the BATH/ASME 2016 Symposium on Fluid Power and Motion Control. Bath, UK. doi:10.1115/FPMC2016-1780
[27] Schindele, D., Menn, I., and Aschemann, H. (2009). Nonlinear optimal control of an overhead travelling crane, In 2009 IEEE Control Applications, (CCA) Intelligent Control, (ISIC). pages 1045--1050. doi:10.1109/CCA.2009.5280705
[28] Singhose, W., Seering, W., and Singer, M. (1996). Input shaping for vibration reduction with specified insensitivity to modeling errors, Proc. Japan-USA Symp. Flexible Automation. 1.
[29] Sorensen, K.L., Singhose, W., and Dickerson, S. (2007). A controller enabling precise positioning and sway reduction in bridge and gantry cranes, Control Engineering Practice. 15(7):825 -- 837. Special Issue on Award Winning Applications. doi:10.1016/j.conengprac.2006.03.005
[30] Sung-Kun Cho and Ho-Hoon Lee. (2000). An anti-swing control of a 3-dimensional overhead crane, In Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), volume2. pages 1037--1041 vol.2. doi:10.1109/ACC.2000.876658


BibTeX:
@article{MIC-2021-3-2,
  title={{Development of 3D Anti-Swing Control for Hydraulic Knuckle Boom Crane}},
  author={Jensen, Konrad J. and Ebbesen, Morten K. and Hansen, Michael R.},
  journal={Modeling, Identification and Control},
  volume={42},
  number={3},
  pages={113--129},
  year={2021},
  doi={10.4173/mic.2021.3.2},
  publisher={Norwegian Society of Automatic Control}
};