“Residual vibration control for robotic 3D scanning with application to inspection of marine propellers”

Authors: Eirik B. Njaastad, Geir Ole Tysse and Olav Egeland,
Affiliation: NTNU and SINTEF
Reference: 2021, Vol 42, No 2, pp. 83-98.

Keywords: Input shaping, Robotic 3D scanning

Abstract: This paper presents a system for 3D scanning of a large marine propeller blade with a 3D camera mounted on an industrial robot. An industrial 3D camera with structured light is used where the accuracy is in the order of 0.1 mm. The camera is mounted on a rod attached to the robot's end-effector to have sufficient reach for scanning the propeller. This rod introduces mechanical vibrations in the system when the robot is repositioned for a new scan. Fast and efficient scanning is achieved by using vibration cancellation in a feedforward configuration based on input shaping, where the programmed pose increments of the robot are reshaped to give a fast vibration settling time after repositioning the camera. The use of input shaping techniques ensures that the imaging device is at rest during the scanning operation when the object's surface is captured. Three different input shapers are considered: The Zero Vibration (ZV), ZV Derivative (ZVD), and Extra Insensitive (EI) shapers. By minimizing the residual vibrations, the accuracy and precision of the system are increased, and complete 3D scanning of objects can be performed in a shorter time. Moreover, the resulting scan quality is improved. The effectiveness of the proposed method is validated in simulations and experiments where the ZVD and EI shapers proved to be best suited for the scanning application. The experimental validation involved a full scanning operation for a marine propeller blade where a UR10 robot with the original industrial control system was used. It was seen that the proposed system gave sufficient accuracy for determining the surface of the propeller blade.

PDF PDF (4201 Kb)        DOI: 10.4173/mic.2021.2.3

[1] Chen, F., Brown, G.M., and Song, M. (2000). Overview of three-dimensional shape measurement using optical methods, Optical Engineering. 39(1):10. doi:10.1117/1.602438
[2] Daniilidis, K. (1999). Hand-eye calibration using dual quaternions, The International Journal of Robotics Research. 18(3):286--298. doi:10.1177/02783649922066213
[3] Golub, G.H. and VanLoan, C.F. (1996). Matrix Computations, Johns Hopkins University Press, Baltimore, MD, USA, 3rd edition, 1996.
[4] Hartley, R. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision, Cambridge University Press. doi:10.1017/cbo9780511811685
[5] Joshi, S.M. (1989). Control of large flexible space structures, volume 131 of Lecture Notes in Control and Information Sciences, Springer. doi:10.1007/BFb0042076
[6] Kamel, A., Lange, F., and Hirzinger, G. (2008). New aspects of input shaping control to damp oscillations of a compliant force sensor, In 2008 IEEE International Conference on Robotics and Automation. pages 2629--2635. doi:10.1109/ROBOT.2008.4543609
[7] Kanestrom, R. and Egeland, O. (1994). Nonlinear active vibration damping, IEEE Transactions on Automatic Control. 39(9):1925--1928. doi:10.1109/9.317126
[8] Mun, J.I., Jo, T., Kim, T., and Pahk, H.J. (2015). Residual vibration reduction of white-light scanning interferometry by input shaping, Optics Express. 23(1):464. doi:10.1364/oe.23.000464
[9] Park, F. and Martin, B. (1994). Robot sensor calibration: solving AX=XB on the euclidean group, IEEE Transactions on Robotics and Automation. 10(5):717--721. doi:10.1109/70.326576
[10] Perez, L., Rodriguez, I., Rodriguez, N., Usamentiaga, R., and Garcia, D. (2016). Robot guidance using machine vision techniques in industrial environments: A comparative review, Sensors. 16(3):335. doi:10.3390/s16030335
[11] Preumont, A. (2011). Vibration Control of Active Structures, Springer Netherlands. doi:10.1007/978-94-007-2033-6
[12] Rauscher, F., Nann, S., and Sawodny, O. (2018). Motion control of an overhead crane using a wireless hook mounted IMU, In 2018 Annual American Control Conference (ACC). IEEE, pages 5677--5682. doi:10.23919/acc.2018.8431170
[13] Robinett, R., R.Dohrmann, C., RichardEisler, G., T.Feddema, J., G.Parker, G., Wilson, D., and Stokes, D. (2002). Flexible Robot Dynamics and Controls, Springer. doi:10.1007/978-1-4615-0539-6
[14] Savio, E., Chiffre, L.D., and Schmitt, R. (2007). Metrology of freeform shaped parts, CIRP Annals. 56(2):810--835. doi:10.1016/j.cirp.2007.10.008
[15] Schitter, G., Thurner, P.J., and Hansma, P.K. (2008). Design and input-shaping control of a novel scanner for high-speed atomic force microscopy, Mechatronics. 18(5-6):282--288. doi:10.1016/j.mechatronics.2008.02.007
[16] Schmitt, R., Peterek, M., Morse, E., Knapp, W., Galetto, M., Härtig, F., Goch, G., Hughes, B., Forbes, A., and Estler, W. (2016). Advances in large-scale metrology endash review and future trends, CIRP Annals. 65(2):643--665. doi:10.1016/j.cirp.2016.05.002
[17] Shiu, Y. and Ahmad, S. (1989). Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX=XB, IEEE Transactions on Robotics and Automation. 5(1):16--29. doi:10.1109/70.88014
[18] Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2008). Robotics: Modelling, Planning and Control, Springer Publishing Company, Incorporated, 1st edition. doi:10.1007/978-1-84628-642-1
[19] Singer, N.C. (1989). Residual vibration reduction in computer controlled machines, Ph.D. thesis, MIT Artificial Intelligence Laboratory, Cambridge, MA, 1989.
[20] Singer, N.C. and Seering, W.P. (1990). Preshaping Command Inputs to Reduce System Vibration, Journal of Dynamic Systems, Measurement, and Control. 112(1):76--82. doi:10.1115/1.2894142
[21] Singh, T. and Singhose, W. (2002). Tutorial on input shaping/time delay control of maneuvering flexible structures, In Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), volume3. pages 1717--1731 vol.3. doi:10.1109/ACC.2002.1023813
[22] Singhose, W., Seering, W., and Singer, N. (1994). Residual vibration reduction using vector diagrams to generate shaped inputs, Journal of Mechanical Design. 116(2):654--659. doi:10.1115/1.2919428
[23] Singhose, W.E., Seering, W.P., and Singer, N.C. (1996). Input shaping for vibration reduction with specified insensitivity to modeling errors, Japan-USA Sym. on Flexible Automation. 1:307--13.
[24] Song, Z., Guo, T., Fu, X., and Hu, X. (2018). Residual vibration control based on a global search method in a high-speed white light scanning interferometer, Applied Optics. 57(13):3415. doi:10.1364/ao.57.003415
[25] Tsai, R. and Lenz, R. (1989). A new technique for fully autonomous and efficient 3D robotics hand/eye calibration, IEEE Transactions on Robotics and Automation. 5(3):345--358. doi:10.1109/70.34770
[26] Umeyama, S. (1991). Least-squares estimation of transformation parameters between two point patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence. 13(4):376--380. doi:10.1109/34.88573
[27] Vaughan, J., Yano, A., and Singhose, W. (2008). Comparison of robust input shapers, Journal of Sound and Vibration. 315:797--815. doi:10.1016/j.jsv.2008.02.032
[28] Yu Zhao, Chen, W., Te Tang, and Tomizuka, M. (2016). Zero time delay input shaping for smooth settling of industrial robots, In 2016 IEEE International Conference on Automation Science and Engineering (CASE). pages 620--625. doi:10.1109/COASE.2016.7743459
[29] Zhao, Y. and Tomizuka, M. (2017). Modified Zero Time Delay Input Shaping for Industrial Robot With Flexibility, American Society of Mechanical Engineers Digital Collection, 2017. doi:10.1115/DSCC2017-5219

  title={{Residual vibration control for robotic 3D scanning with application to inspection of marine propellers}},
  author={Njaastad, Eirik B. and Tysse, Geir Ole and Egeland, Olav},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}