“A Co-operative Hybrid Model For Ship Motion Prediction”

Authors: Robert Skulstad, Guoyuan Li, Thor I. Fossen, Tongtong Wang and Houxiang Zhang,
Affiliation: NTNU Aalesund and NTNU, Department of Engineering Cybernetics
Reference: 2021, Vol 42, No 1, pp. 17-26.

Keywords: Ship motion prediction, Hybrid model, Dynamics

Abstract: Dynamic models of ships have been widely used for model-based control and short-term prediction in the past. Identifying the parameters of such models has mainly been done through scaled model tests, full scale tests or computational fluid dynamics software. This is a challenging task due to the many aspects that influence the ship dynamic behaviour and thus one would expect a certain degree of mismatch between the actual motion of the ship and the modelled behaviour. The mismatch in the dynamic model may be due to unmodelled effects, but also the lack of measurements of waves and ocean current. To make up for the discrepancies the authors propose to create a co-operative hybrid model consisting of the dynamic model and a neural network, where the neural network predicts the acceleration error of the dynamic model. The approach is tested on real data originating from the Research Vessel (RV) Gunnerus performing a shutdown of thrusters during stationkeeping. The subsequent task is to predict the propagation of position and heading while drifting due to wind, wave and current forces. Comparing the motion of the real ship and the modelled ship, shows the improved prediction accuracy of the hybrid model.

PDF PDF (718 Kb)        DOI: 10.4173/mic.2021.1.2

References:
[1] Blindheim, S., Gros, S., and Arne, T. (2020). Risk-Based Model Predictive Control for Autonomous Ship Emergency Management, IFAC-PapersOnLine. doi:10.1016/j.ifacol.2020.12.1456
[2] Brandsaeter, A. and Vanem, E. (2018). Ship speed prediction based on full scale sensor measurements of shaft thrust and environmental conditions, Ocean Engineering. 162(May):316--330. doi:10.1016/j.oceaneng.2018.05.029
[3] Dannenberg, J., Hessner, K., Naaijen, P., vanden Boom, H., and Reichert, K. (2010). The On board Wave and Motion Estimator OWME, In International Offshore and Polar Engineering Conference, volume7. pages 424--431.
[4] Duan, S., Ma, Q., Huang, L., and Ma, X. (2019). A LSTM deep learning model for deterministic ship motions estimation using wave-excitation inputs, Proceedings of the International Offshore and Polar Engineering Conference. 1:959--965.
[5] Duan, W.-y., Huang, L.-m., Han, Y., and Wang, R. (2015). IRF - AR Model for Short-Term Prediction of Ship Motion, In Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering Conference. pages 59--66, 2015.
[6] Duan, W.-y., Huang, L.-m., Han, Y., Zhang, Y.-h., and Huang, S. (2015). A hybrid AR-EMD-SVR model for the short-term prediction of nonlinear and non-stationary ship motion, Journal of Zhejiang University Science A, 2015. 16(7):562--576. doi:10.1631/jzus.A1500040
[7] Fossen, T.I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley and Sons Ltd.. doi:10.1002/9781119994138
[8] Fossen, T.I. and Perez, T. (2009). Kalman Filtering for Positioning and Heading Control of Ships and Offshore Rigs: Estimating the effects of waves, wind, and current, IEEE Control Systems Magazine. 29(6):32--46. doi:10.1109/MCS.2009.934408
[9] From, P., Gravdahl, J., and Abbeel, P. (2010). On the influence of ship motion prediction accuracy on motion planning and control of robotic manipulators on seaborne platforms, In International Conference on Robotics and Automation. pages 5281--5288. doi:10.1109/ROBOT.2010.5509813
[10] Giron-Sierra, J.M. and Esteban, S. (2010). The problem of quiescent period prediction for ships: A review, In IFAC Proceedings Volumes, volume43. pages 307--312. doi:10.3182/20100915-3-DE-3008.00007
[11] Hassani, V., Ross, A., Selvik, O., Fathi, D., Sprenger, F., and Berg, T.E. (2015). Time Domain Simulation Model For Research Vessel Gunnerus, In International Conference on Ocean, Offshore and Arctic Engineering. pages 1--6.
[12] Hong, W.C., Li, M.W., Geng, J., and Zhang, Y. (2019). Novel chaotic bat algorithm for forecasting complex motion of floating platforms, Applied Mathematical Modelling. 72:425--443. doi:10.1016/j.apm.2019.03.031
[13] Kuchler, S., Mahl, T., Neupert, J., Schneider, K., and Sawodny, O. (2011). Active control for an offshore crane using prediction of the vessels motion, IEEE/ASME Transactions on Mechatronics. 16(2):297--309. doi:10.1109/TMECH.2010.2041933
[14] Li, G., Kawan, B., Wang, H., and Zhang, H. (2017). Neural-network-based modelling and analysis for time series prediction of ship motion, Ship Technology Research (Schiffstechnik). 64(1):30--39. doi:10.1080/09377255.2017.1309786
[15] Li, M.W., Geng, J., Han, D.F., and Zheng, T.J. (2016). Ship motion prediction using dynamic seasonal RvSVR with phase space reconstruction and the chaos adaptive efficient FOA, Neurocomputing. 174:661--680. doi:10.1016/j.neucom.2015.09.089
[16] Li, M.W., Geng, J., Hong, W.C., and Zhang, L.D. (2019). Periodogram estimation based on LSSVR-CCPSO compensation for forecasting ship motion, Nonlinear Dynamics. 97(4):2579--2594. doi:10.1007/s11071-019-05149-5
[17] Ma, J., Li, T., and Li, G. (2006). Comparison of Representative Method for Time Series Prediction, In 2006 International Conference on Mechatronics and Automation. pages 2448--2453. doi:10.1109/ICMA.2006.257735
[18] Perera, L.P. (2017). Navigation vector based ship maneuvering prediction, Ocean Engineering. 138:151--160. doi:10.1016/j.oceaneng.2017.04.017
[19] Skulstad, R., Li, G., Fossen, T.I., Vik, B., and Zhang, H. (2019). Dead Reckoning of Dynamically Positioned Ships: Using an Efficient Recurrent Neural Network, IEEE Robotics and Automation Magazine. 26(3):39--51. doi:10.1109/MRA.2019.2918125
[20] Skulstad, R., Li, G., Fossen, T.I., Vik, B., and Zhang, H. (2021). A Hybrid Approach to Motion Prediction for Ship Docking - Integration of a Neural Network Model into the Ship Dynamic Model, IEEE Transactions on Instrumentation and Measurement. 70. doi:10.1109/TIM.2020.3018568
[21] Smogeli, O.N. (2006). Control of Marine Propellers: From Normal to Extreme Conditions, Ph.D. thesis, Norwegian University of Science and Technology.
[22] Takami, T., Nielsen, U.D., and Jensen, J.J. (2021). Real-time deterministic prediction of wave-induced ship responses based on short-time measurements, Ocean Engineering. 221(December 2020). doi:10.1016/j.oceaneng.2020.108503
[23] Triantafyllou, M., Bodson, M., and Athans, M. (1983). Real time estimation of ship motions using Kalman filtering techniques, IEEE Journal of Oceanic Engineering. OE-8(1):9--20. doi:10.1109/JOE.1983.1145542
[24] vande Ven, P. W.J., Johansen, T.A., Sorensen, A.J., Flanagan, C., and Toal, D. (2007). Neural network augmented identification of underwater vehicle models, Control Engineering Practice. 15(6):715--725. doi:10.1016/j.conengprac.2005.11.004
[25] Yang, X. (2013). Displacement motion prediction of a landing deck for recovery operations of rotary UAVs, International Journal of Control, Automation and Systems, 2013. 11(1):58--64. doi:10.1007/s12555-011-0157-8
[26] Yin, J., Wang, N., and Perakis, A.N. (2017). A Real-Time Sequential Ship Roll Prediction Scheme Based on Adaptive Sliding Data Window, IEEE Transactions on Systems, Man, and, Cybernetics: Systems, 2017. pages 1--11. doi:10.1109/TSMC.2017.2735995
[27] Yin, J., Zhang, W., Li, T., and Hu, J. (2010). Modified minimal resource allocating network for ship motion predictive control, In Proceedings of 2010 International Conference on Intelligent Control and Information Processing, ICICIP 2010, PART 1. pages 231--235, 2010. doi:10.1109/ICICIP.2010.5565241
[28] Zhang, G., Tan, F., and Wu, Y. (2020). Ship Motion Attitude Prediction Based on an Adaptive Dynamic Particle Swarm Optimization Algorithm and Bidirectional LSTM Neural Network, IEEE Access. 8:90087--90098. doi:10.1109/ACCESS.2020.2993909


BibTeX:
@article{MIC-2021-1-2,
  title={{A Co-operative Hybrid Model For Ship Motion Prediction}},
  author={Skulstad, Robert and Li, Guoyuan and Fossen, Thor I. and Wang, Tongtong and Zhang, Houxiang},
  journal={Modeling, Identification and Control},
  volume={42},
  number={1},
  pages={17--26},
  year={2021},
  doi={10.4173/mic.2021.1.2},
  publisher={Norwegian Society of Automatic Control}
};