“Co-simulation as a Fundamental Technology for Twin Ships”

Authors: Lars Ivar Hatledal, Robert Skulstad, Guoyuan Li, Arne Styve and Houxiang Zhang,
Affiliation: NTNU Aalesund
Reference: 2020, Vol 41, No 4, pp. 297-311.

Keywords: Co-simulation, Digital twin, FMI, SSP, R/V Gunnerus

Abstract: The concept of digital twins, characterized by the high fidelity with which they mimic their physical counterpart, provide potential benefits for the next generation of advanced ships. It allows analysis of data and monitoring of marine systems to avoid problems before they occur, and plan for the future by using simulations. However, issues related to integration of heterogeneous systems and hardware, memory, and CPU utilization makes implementing such a digital twin in a monolithic or centralized manner undesirable. Co-simulation addresses this problem, allowing different sub-systems to be modelled independently, but simulated together. This paper presents the ongoing work towards realizing a digital twin of the Gunnerus research vessel by applying co-simulation and related standards. The paper does not present a complete, ready-to-use digital twin. Rather it presents the preliminary results, procedure, and enabling technologies used towards realizing one. In order to accommodate this goal, a novel co-simulation solution, developed in cooperation by members of the Norwegian maritime industry, is presented. Furthermore, a maneuvering case-study is carried out, utilizing pre-recorded sensor data obtained from the Gunnerus. Through a comparative study with the real maneuver in terms of speed, course, and power consumption, the proposed approach is verified in simulation.

PDF PDF (2367 Kb)        DOI: 10.4173/mic.2020.4.2

DOI forward links to this article:
[1] Guoyuan Li, Erlend Holseker, Arvin Khodabandeh, Isak Gamnes Sneltvedt, Erik BjornoY and Houxiang Zhang (2021), doi:10.1109/ICMA52036.2021.9512631
[2] Jan-Erik Giering and Alexander Dyck (2021), doi:10.1515/auto-2021-0082
[3] Icaro Aragao Fonseca, Henrique Murilo Gaspar, Pedro Cardozo de Mello and Humberto Akira Uehara Sasaki (2022), doi:10.1016/j.cad.2021.103191
[4] Han Li, Guoxin Wang, Jinzhi Lu and Dimitris Kiritsis (2022), doi:10.3233/ICA-220677
[5] Rasmus E. Nielsen, Dimitrios Papageorgiou, Lazaros Nalpantidis, Bugge T. Jensen and Mogens Blanke (2022), doi:10.1016/j.oceaneng.2022.111579
[6] Tongtong Wang, Lars Ivar Hatledal, Motoyasu Kanazawa, Guoyuan Li and Houxiang Zhang (2022), doi:10.1007/978-3-031-12429-7_14
[7] Tongtong Wang, Robert Skulstad, Motoyasu Kanazawa, Lars Ivar Hatledal, Guoyuan Li and Houxiang Zhang (2022), doi:10.1007/978-3-031-19762-8_8
[8] F. Mauro and A.A. Kana (2023), doi:10.1016/j.oceaneng.2022.113479
[9] Zhicheng Hu, Amirashkan Haghshenas, Agus Hasan, Steffan Sorenes, Anniken Karlsen and Saleh Alaliyat (2023), doi:10.1007/978-981-99-0252-1_9
[10] Foivos Mylonopoulos, Henk Polinder and Andrea Coraddu (2023), doi:10.1109/ACCESS.2023.3263719
[11] Anastasios Temperekidis, Nikolaos Kekatos, Panagiotis Katsaros, Weicheng He, Saddek Bensalem, Hisham AbdElSabour, Mohamed AbdElSalam and Ashraf Salem (2023), doi:10.1007/978-3-031-31268-7_10
[12] Remigiusz Iwa kowicz and Rados aw Rutkowski (2023), doi:10.3390/su15129733
[13] Bo Zhang, Huiping Shi and Xinyu Wang (2023), doi:10.1002/cav.2206
[14] Maurizio Palmieri, Christian Quadri, Adriano Fagiolini and Cinzia Bernardeschi (2023), doi:10.1016/j.comcom.2023.09.019
[15] Junjie Zhao, Christopher Conrad, Rodolphe Fremond, Anurag Mukherjee, Quentin Delezenne, Yu Su, Yan Xu and Antonios Tsourdos (2023), doi:10.1109/DASC58513.2023.10311124
[16] Linh Vu, Tung-Lam Nguyen, Mahmoud S. Abdelrahman, Tuyen Vu and Osama A. Mohammed (2024), doi:10.1109/TIA.2023.3311429
References:
[1] Bekker, A. (2018). Exploring the blue skies potential of digital twin technology for a polar supply and research vessel, In Proceedings of the 13th International Marine Design Conference Marine Design XIII (IMDC 2018), volume1. pages 135--146. doi:10.1201/9780429440533-11
[2] Blochwitz, T., Otter, M., Akesson, J., Arnold, M., Clauss, C., Elmqvist, H., Friedrich, M., Junghanns, A., Mauss, J., Neumerkel, D., etal. (2012). Functional mockup interface 2, 0: The standard for tool independent exchange of simulation models. In Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany, 076. Linkoeping University Electronic Press, pages 173--184. doi:10.3384/ecp12076173
[3] Bulian, G. and Cercos-Pita, J.L. (2018). Co-simulation of ship motions and sloshing in tanks, Ocean Engineering. 152:353--376. doi:10.1016/j.oceaneng.2018.01.028
[4] Catia-Systems. (2019). Fmpy, 2019. https://github.com/CATIA-Systems/FMPy. (Date accessed 10-December-2020).
[5] Chu, Y., Hatledal, L.I., Aesoy, V., Ehlers, S., and Zhang, H. (2018). An object-oriented modeling approach to virtual prototyping of marine operation systems based on functional mock-up interface co-simulation, Journal of Offshore Mechanics and Arctic Engineering. 140(2). doi:10.1115/1.4038346
[6] Chu, Y., Pedersen, B.S., and Zhang, H. (2019). Virtual prototyping for maritime winch design and operations based on functional mock-up interface co-simulation, Ships and Offshore Structures. 14(sup1):261--269. doi:10.1080/17445302.2019.1577597
[7] Cremona, F., Lee, E., Lohstroh, M., Masin, M., Broman, D., and Tripakis, S. (2018). Hybrid co-simulation: It's about time, In 21st ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, MODELS 2018, 14 October 2018 through 19 October 2018. Association for Computing Machinery, Inc. doi:10.1145/3239372.3242896
[8] Dahmann, J.S., Fujimoto, R.M., and Weatherly, R.M. (1997). The department of defense high level architecture, In Proceedings of the 29th conference on Winter simulation. pages 142--149. doi:10.1145/268437.268465
[9] Durling, E., Palmkvist, E., and Henningsson, M. (2017). Fmi and ip protection of models: A survey of use cases and support in the standard, In Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017, 132. Linkoeping University Electronic Press, pages 329--335. doi:10.3384/ecp17132329
[10] Falcone, A. and Garro, A. (2019). Distributed co-simulation of complex engineered systems by combining the high level architecture and functional mock-up interface, Simulation Modelling Practice and Theory. 97:101967. doi:10.1016/j.simpat.2019.101967
[11] Fathi, D. (2013). Marintek vessel simulator (vesim), user manual, MARINTEK. Report.
[12] Galtier, V., Ianotto, M., Caujolle, M., Tavella, J.-P., Gomez, J.E., Cabrera, J. J.H., Reinbold, V., and Kremers, E. (2017). Experimenting with matryoshka co-simulation: Building parallel and hierarchical fmus, In Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017. pages 663--671. doi:10.3384/ecp17132663
[13] Gomes, C., Thule, C., Broman, D., Larsen, P.G., and Vangheluwe, H. (2018). Co-simulation: a survey, ACM Computing Surveys (CSUR). 51(3):1--33. doi:10.1145/3179993
[14] Gomez, J.E., Cabrera, J. J.H., Tavella, J.-P., Vialle, S., Kremers, E., and Frayssinet, L. (2019). Daccosim ng: co-simulation made simpler and faster, In Proceedings of the 13th International Modelica Conference, Regensburg, Germany, March 4--6, 2019, 157. Linkoeping University Electronic Press. doi:10.3384/ecp19157785
[15] Hassani, V., Rindaroy, M., Kyllingstad, L.T., Nielsen, J.B., Sadjina, S.S., Skjong, S., Fathi, D., Johnsen, T., Aesoy, V., and Pedersen, E. (2016). Virtual prototyping of maritime systems and operations, In ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, pages V007T06A018--V007T06A018. doi:10.1007/s00773-017-0514-2
[16] Hassani, V., Ross, A., Selvik, O., Fathi, D., Sprenger, F., and Berg, T.E. (2015). Time domain simulation model for research vessel gunnerus, In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers Digital Collection. doi:10.1115/OMAE2015-41786
[17] Hatledal, L.I. (2020). sspgen, 2020. https://github.com/NTNU-IHB/sspgen. (Date accessed 10-December-2020).
[18] Hatledal, L.I., Collonval, F., and Zhang, H. (2020). Enabling python driven co-simulation models with pythonfmu, In ECMS. pages 235--239. doi:10.7148/2020-0235
[19] Hatledal, L.I., Styve, A., Hovland, G., and Zhang, H. (2019). A language and platform independent co-simulation framework based on the functional mock-up interface, IEEE Access, 2019. 7:109328--109339. doi:10.1109/ACCESS.2019.2933275
[20] Hatledal, L.I., Zhang, H., Styve, A., and Hovland, G. (2019). Fmu-proxy: A framework for distributed access to functional mock-up units, In Proceedings of the 13th International Modelica Conference, Regensburg, Germany, March 4--6, 2019, 157. Linkoeping University Electronic Press, 2019. doi:10.3384/ecp1915779
[21] JModelica. (2017). Fmi library, 2017. http://www.jmodelica.org/FMILibrary, (Date accessed 10-December-2020).
[22] Jung, T., Shah, P., and Weyrich, M. (2018). Dynamic co-simulation of internet-of-things-components using a multi-agent-system, Procedia CIRP. 72:874--879. doi:10.1016/j.procir.2018.03.084
[23] Koehler, J., Heinkel, H.-M., Mai, P., Krasser, J., Deppe, M., and Nagasawa, M. (2016). Modelica-association-project “system structure and parameterization”--early insights, In The First Japanese Modelica Conferences, May 23-24, Tokyo, Japan, 124. Linkoeping University Electronic Press, pages 35--42. doi:10.3384/ecp1612435
[24] Krammer, M., Benedikt, M., Blochwitz, T., Alekeish, K., Amringer, N., Kater, C., Materne, S., Ruvalcaba, R., Schuch, K., Zehetner, J., etal. (2018). The distributed co-simulation protocol for the integration of real-time systems and simulation environments, In Proceedings of the 50th Computer Simulation Conference. Society for Computer Simulation International, page1. doi:10.22360/summersim.2018.scsc.001
[25] Lacoursiere, C. and Hardin, T. (2017). Fmi go! a simulation runtime environment with a client server architecture over multiple protocols, In Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017, 132. Linkoeping University Electronic Press, pages 653--662. doi:10.3384/ecp17132653
[26] Liu, H., Liu, X., and Lee, E.A. (2001). Modeling distributed hybrid systems in ptolemy ii, In Proceedings of the 2001 American Control Conference.(Cat. No. 01CH37148), volume6. IEEE, pages 4984--4985. doi:10.1109/ACC.2001.945773
[27] Negri, E., Fumagalli, L., Cimino, C., and Macchi, M. (2019). Fmu-supported simulation for cps digital twin, In International Conference on Changeable, Agile, Reconfigurable and Virtual Production, volume28. pages 201--206. doi:10.1016/j.promfg.2018.12.033
[28] Nicolai, A. (2017). Mastersim - a simulation master for functional mockup units, 2017. https://bauklimatik-dresden.de/mastersim/index.php?aLa=en. (Date accessed 10-December-2020).
[29] Ochel, L., Braun, R., Thiele, B., Asghar, A., Buffoni, L., Eek, M., Fritzson, P., Fritzson, D., Horkeby, S., Hallquist, R., etal. (2019). Omsimulator--integrated fmi and tlm-based co-simulation with composite model editing and ssp, In Proceedings of the 13th International Modelica Conference, Regensburg, Germany, March 4--6, 2019, 157. Linkoeping University Electronic Press. doi:10.3384/ecp1915769
[30] Open Simulation Platform. (2020). Open simulation platform - joint industry project for the maritime industry, 2020. https://opensimulationplatform.com/. (Date accessed 10-December-2020).
[31] Perabo, F., Park, D., Zadeh, M.K., Smogeli, O., and Jamt, L. (2020). Digital twin modelling of ship power and propulsion systems: Application of the open simulation platform (osp), In 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE). IEEE, pages 1265--1270. doi:10.1109/ISIE45063.2020.9152218
[32] Rasheed, A., San, O., and Kvamsdal, T. (2020). Digital twin: Values, challenges and enablers from a modeling perspective, IEEE Access. 8:21980--22012. doi:10.1109/ACCESS.2020.2970143
[33] Sadjina, S., Kyllingstad, L.T., Rindaroy, M., Skjong, S., Aesoy, V., and Pedersen, E. (2019). Distributed co-simulation of maritime systems and operations, Journal of Offshore Mechanics and Arctic Engineering. 141(1). doi:10.1115/1.4040473
[34] Sanchez-Gonzalez, P.-L., Diaz-Gutierrez, D., Leo, T.J., and Nunez-Rivas, L.R. (2019). Toward digitalization of maritime transport? Sensors, 19(4):926. doi:10.3390/s19040926
[35] Scheifele, C., Verl, A., and Riedel, O. (2019). Real-time co-simulation for the virtual commissioning of production systems, Procedia CIRP. 79:397--402. doi:10.1016/j.procir.2019.02.104
[36] Schleich, B., Anwer, N., Mathieu, L., and Wartzack, S. (2017). Shaping the digital twin for design and production engineering, CIRP Annals - Manufacturing Technology. 66(1):141--144. doi:10.1016/J.CIRP.2017.04.040
[37] Schweiger, G., Gomes, C., Engel, G., Hafner, I., Schoeggl, J., Posch, A., and Nouidui, T. (2019). An empirical survey on co-simulation: Promising standards, challenges and research needs, Simulation modelling practice and theory. 95:148--163. doi:10.1016/j.simpat.2019.05.001
[38] Sullivan, B.P., Desai, S., Sole, J., Rossi, M., Ramundo, L., and Terzi, S. (2020). Maritime 4, 0--opportunities in digitalization and advanced manufacturing for vessel development. Procedia Manufacturing. 42:246--253. doi:10.1016/j.promfg.2020.02.078
[39] Thule, C., Lausdahl, K., Gomes, C., Meisl, G., and Larsen, P.G. (2019). Maestro: The into-cps co-simulation framework, Simulation Modelling Practice and Theory. 92:45--61. doi:10.1016/j.simpat.2018.12.005
[40] Yilmaz, F., Durak, U., Taylan, K., and Oguztuzun, H. (2014). Adapting functional mockup units for hla-compliant distributed simulation, In Proceedings of the 10 th International Modelica Conference; March 10-12; 2014; Lund; Sweden, 096. Linkoeping University Electronic Press, pages 247--257. doi:10.3384/ecp14096247
[41] Yun, S., Park, J.-H., and Kim, W.-T. (2017). Data-centric middleware based digital twin platform for dependable cyber-physical systems, In 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN). IEEE, pages 922--926. doi:10.1109/ICUFN.2017.7993933


BibTeX:
@article{MIC-2020-4-2,
  title={{Co-simulation as a Fundamental Technology for Twin Ships}},
  author={Hatledal, Lars Ivar and Skulstad, Robert and Li, Guoyuan and Styve, Arne and Zhang, Houxiang},
  journal={Modeling, Identification and Control},
  volume={41},
  number={4},
  pages={297--311},
  year={2020},
  doi={10.4173/mic.2020.4.2},
  publisher={Norwegian Society of Automatic Control}
};