“A Self-Contained Cylinder Drive with Indirectly Controlled Hydraulic Lock”

Authors: Søren Ketelsen, Torben Ole Andersen, Morten K. Ebbesen and Lasse Schmidt,
Affiliation: Aalborg University and University of Agder
Reference: 2020, Vol 41, No 3, pp. 185-205.

Keywords: Energy efficient hydraulic actuation, pump-controlled cylinder, cylinder direct drive, multivariable control, load holding, safety functionality, cylinder lock

Abstract: This paper presents a self-contained pump-controlled hydraulic linear drive including an innovative load holding sub-circuit. For safety critical applications such as crane manipulators, locking valves or load holding valves are enforced by legislation, but the load holding functionality may also be used actively to decrease the energy consumption for applications where the load is kept stationary for longer periods of time. The system proposed in this paper is based on a simple hydraulic architecture using two variable-speed electric motors each connected to a fixed-displacement pump. This architecture is well-known in academic literature, but in this paper a novel load holding sub-circuit has been included. To control this load holding functionality, the low chamber pressure needs to be controlled accurately, while still being able to control the motion of the cylinder piston as well. Due to strong cross-couplings between cylinder piston motion and chamber pressures this task is non-trivial. The control for opening the locking valves is indirect in the sense that it is controlled via the chamber pressures, which are actively controlled. The fundamental control strategy presented in this paper is based on transforming the highly coupled physical states to virtual states, significantly reducing cross-couplings.

PDF PDF (4589 Kb)        DOI: 10.4173/mic.2020.3.4

DOI forward links to this article:
[1] Soren Ketelsen, Sebastian Michel, Torben O. Andersen, Morten Kjeld Ebbesen, Jurgen Weber and Lasse Schmidt (2021), doi:10.3390/en14092375
[2] Konrad Johan Jensen, Morten Kjeld Ebbesen and Michael Rygaard Hansen (2021), doi:10.3390/en14206566
[3] Lasse Schmidt and Kenneth Vorbol Hansen (2022), doi:10.3390/en15031228
[4] Jiaming Zhang, Lingwei Li, Xinglong Zhang, Tianhong Zhang and Yuan Yuan (2022), doi:10.3390/app12063089
[5] Wei Zhao, Mohit Bhola, Morten K. Ebbesen and Torben Ole Andersen (2023), doi:10.4173/mic.2023.3.3
[6] Wei Zhao, Morten Kjeld Ebbesen and Torben Ole Andersen (2023), doi:10.1109/ICCMA59762.2023.10374706
[7] Wei Zhao, Morten Kjeld Ebbesen, Michael Rygaard Hansen and Torben Ole Andersen (2024), doi:10.3390/en17112484
References:
[1] Brahmer, B. (2012). CLDP - Hybrid Drive using Servo Pump in Closed Loop, In Proceedings of the 8th International Fluid Power Conference, Dresden, Germany, March 26-28. pages 93--102.
[2] Calışkan, H., Balkan, T., and Platin, B.E. (2015). A Complete Analysis and a Novel Solution for Instability in Pump Controlled Asymmetric Actuators, Journal of Dynamic Systems, Measurement, and Control. 137(9). doi:10.1115/1.4030544
[3] Costa, G.K. and Sepehri, N. (2018). Four-Quadrant Analysis and System Design for Single-Rod Hydrostatic Actuators, Journal of Dynamic Systems, Measurement, and Control. 141(2). doi:10.1115/1.4041382
[4] Dantlgraber, J. (1993). Hydraulic System for a Differential Piston Type Cylinder, 1993. https://patentimages.storage.googleapis.com/b1/da/49/ce4d84ab1ec11c/US5179836.pdf. United States Patent, Patent Number: 5179836, Company: Mannesmann Rexroth GmbH.
[5] Donkov, V., Andersen, T.O., and Pedersen, H.C. (2017). Applying Digital Hydraulic Technology on a Knuckle Boom Crane Applying Digital Hydraulic Technology on a Knuckle Boom Crane, The Ninth Workshop on Digital Fluid Power, September 7-8, 2017, Aalborg, Denmark.
[6] Donkov, V.H., Andersen, T.O., Pedersen, H.C., and Ebbesen, M.K. (2018). Application of Model Predictive Control in Discrete Displacement Cylinders to Drive a Knuckle Boom Crane, Global Fluid Power Society PhD Symposium. doi:10.1109/GFPS.2018.8472363
[7] Feuser, A., Dantlgraber, J., Spath, D., and Wilke, O. (1995). Servopumpeantriebe fur Differentialzylinder, Olhydraulik und Pneumatik. 39:540--544.
[8] Glad, T. and Ljung, L. (2000). Control Theory - Multivariable and Nonlinear Methods, Taylor & Francis.
[9] Goytil, P., Padovani, D., and Hansen, M.R. (2019). On the Energy Efficiency of Dual Prime Mover Pump-Controlled Hydraulic Cylinders, In Proceedings of the ASME/BATH 2019 Symposium on Fluid Power and Motion Control, Sarasota, Florida, USA, October 7-9. 2019.
[10] Goytil, P.H., Padovani, D., and Hansen, M.R. (2020). A novel solution for the elimination of mode switching in pump-controlled single-rod cylinders, Actuators. 9(1). doi:10.3390/act9010020
[11] Gronkaer, N., Hansen, K.V., Johansen, P., and Schmidt, L. (2020). Tribotronics in Electro-Hydraulic Actuator Technology: Improving Durability by Control, In Proceedings of ASME/BATH 2020 Symposium on Fluid Power and Motion Control. pages 1--9.
[12] Hagen, D., Padovani, D., and Ebbesen, M.K. (2018). Study of a Self-Contained Electro-Hydraulic Cylinder Drive, Global Fluid Power Society PhD Symposium. pages 1--7. doi:10.1109/GFPS.2018.8472360
[13] Hagen, D., Pawlus, W., Ebbesen, M.K., and Andersen, T.O. (2017). Feasibility Study of Electromechanical Cylinder Drivetrain for Offshore Mechatronic Systems, Modeling, Identification and Control: A Norwegian Research Bulletin. 38(2):59--77. http://www.mic-journal.no/ABS/MIC-2017-2-2.asp, doi:10.4173/mic.2017.2.2
[14] Hedegaard Hansen, A., F Asmussen, M., and Bech, M.M. (2017). Energy optimal tracking control with discrete fluid power systems using model predictive control, In Proceedings of the Ninth Workshop on Digital Fluid Power, Aalborg, Denmark, September 7-8. 2017.
[15] Hedegaard Hansen, A., F Asmussen, M., and Bech, M.M. (2018). Model Predictive Control of a Wave Energy Converter with Discrete Fluid Power Power Take-Off System, Energies. 11(3):635. doi:10.3390/en11030635
[16] Hedegaard Hansen, A. and Pedersen, H.C. (2016). Optimal configuration of a discrete fluid power force system utilised in the PTO for WECs, Ocean Engineering. 117:88--98. doi:10.1016/j.oceaneng.2016.03.032
[17] Helduser, S. (1999). Electric-hydrostatic drive—an innovative energy-saving power and motion control system, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 213(5):427--437. http://journals.sagepub.com/doi/10.1243/0959651991540250, doi:10.1243/0959651991540250
[18] Hewett, A.J. (1994). Hydraulic Circuit Flow Control, 1994. United States Patent, Patent Number: 5329767.
[19] Imam, A., Rafiq, M., Jalayeri, E., and Sepehri, N. (2017). Design, Implementation and Evaluation of a Pump-Controlled Circuit for Single Rod Actuators, Actuators. 6. doi:10.3390/act6010010
[20] Jalayeri, E., Imam, A., Tomas, Z., and Sepehri, N. (2015). A throttle-less single-rod hydraulic cylinder positioning system: Design and experimental evaluation, Advances in Mechanical Engineering. 7(5). doi:10.1177/1687814015583249
[21] Ketelsen, S., Andersen, T.O., Ebbesen, M.K., and Schmidt, L. (2019). Mass Estimation of Self-contained Linear Electro-Hydraulic Actuators and Evaluation of the Influence on Payload Capacity of a Knuckle Boom Crane, In Proceedings of the ASME/BATH 2019 Symposium on Fluid Power and Motion Control, Sarasota, Florida, USA, October 7-9. 2019.
[22] Ketelsen, S., Kolks, G., Andersen, T.O., Schmidt, L., and Weber, J. (2020). Bootstrap Reservoir Concepts for Electro-hydraulic Compact Cylinder Drives, In Proceedings of the 12th International Fluid Power Conference. 2020.
[23] Ketelsen, S., Padovani, D., Andersen, T., Ebbesen, M., and Schmidt, L. (2019). Classification and Review of Pump-Controlled Differential Cylinder Drives, Energies, 2019. 12(7):1293. doi:10.3390/en12071293
[24] Ketelsen, S., Padovani, D., Ebbesen, M.K., Andersen, T.O., and Schmidt, L. (2020). A Gasless Reservoir Solution for Electro-Hydraulic Compact Drives with Two Prime Movers, In Proceedings of ASME/BATH 2020 Symposium on Fluid Power and Motion Control. 2020.
[25] Ketelsen, S., Schmidt, L., Donkov, V.H., and Andersen, T.O. (2018). Energy Saving Potential in Knuckle Boom Cranes using a Novel Pump Controlled Cylinder Drive, Modeling, Identification and Control. 39(2):73--89. doi:10.4173/mic.2018.2.3
[26] Kim, S. and Murrenhoff, H. (2012). Measurement of Effective Bulk Modulus for Hydraulic Oil at Low Pressure, Journal of Fluids Engineering. 134(2):021201. doi:10.1115/1.4005672
[27] Linjama, M., Laamanen, A., and Vilenius, M. (2003). Is it Time for Digital Hydraulics? Proceedings of the 8th Scandinavian International Conference on Fluid Power, SICFP, Vol1, (March):347--366.
[28] Lodewyks, J. (1994). Der Differentialzylinder im geschlossenen hydrostatischen Kreislauf, Ph.D. thesis, RWTH Aachen.
[29] Michel, S. and Weber, J. (2012). Energy-efficient electrohydraulic compact drives for low power applications, In Proceedings of the ASME/BATH 2012 Fluid Power and Motion Control, Bath, United Kingdom, September 12-14. pages 93--107.
[30] Minav, T., Bonato, C., Sainio, P., and Pietola, M. (2014). Direct Driven Hydraulic Drive, In Proceedings of the 9th International Fluid Power Conference, Aachen, Germany, March 24-26. pages 7--11.
[31] Neubert, T. (2002). Untersuchungen von drehveraenderbaren Pumpen, Ph.D. thesis, TU Dresden.
[32] Padovani, D., Ketelsen, S., Hagen, D., and Schmidt, L. (2019). A Self-Contained Electro-Hydraulic Cylinder with Passive Load-Holding Capability, Energies. 12(2):292. doi:10.3390/en12020292
[33] Padovani, D., Ketelsen, S., and Schmidt, L. (2020). Downsizing the Electric Motors of Energy Efficient Self-Contained Electro-hydraulic Systems by Hybrid Technologies, In Proceedings of the ASME/BATH Symposium on Fluid Power and Motion Control. pages 1--10.
[34] Pedersen, H.C. and Andersen, T.O. (2018). Pressure Feedback in Fluid Power Systems - Active Damping Explained and Exemplified, IEEE Transactions on Control Systems Technology. 26(1):102--113. doi:10.1109/TCST.2017.2650680
[35] Pedersen, H.C., Schmidt, L., Andersen, T.O., and H. Brask, M. (2014). Investigation of New Servo Drive Concept Utilizing Two Fixed Displacement Units, JFPS International Journal of Fluid Power System. 8(1):1--9. doi:10.5739/jfpsij.8.1
[36] Philips, C. and Parr, J. (2011). Feedback Control Systems, 5th Edition, Pearson, fifth edit edition. ISBN: 978-93-325-0760-9.
[37] Quan, Z., Quan, L., and Zhang, J. (2014). Review of energy efficient direct pump controlled cylinder electro-hydraulic technology, Renewable and Sustainable Energy Reviews. 35:336--346. doi:10.1016/j.rser.2014.04.036
[38] Rahmfeld, R. and Ivantysynova, M. (2001). Displacement controlled linear actuator with differential cylinder - A way to save primary energy in mobile machines, In Proceedings of the 5th International Conference on Fluid Power Transmission and Control, Hangzhou, China, April 4-5. 2001.
[39] Schmidt, L., Groenkjaer, M., Pedersen, H.C., and Andersen, T.O. (2017). Position Control of an Over‐Actuated Direct Hydraulic Cylinder Drive, Control Engineering Practice. 64:1--14. doi:10.1016/J.CONENGPRAC.2017.04.003
[40] Schmidt, L., Ketelsen, S., Brask, M.H., and Mortensen, K.A. (2019). A Class of Energy Efficient Self-Contained Electro-Hydraulic Drives with Self-Locking Capability, Energies, 2019. 12(10):1866. doi:10.3390/en12101866
[41] Schmidt, L., Ketelsen, S., Gronkaer, N., and Hansen, K.V. (2020). On Secondary Control Principles in Pump Controlled Electro-Hydraulic Linear Actuators, In Proceedings of ASME/BATH 2020 Symposium on Fluid Power and Motion Control. pages 1--13.
[42] Schmidt, L., Ketelsen, S., Padovani, D., and Mortensen, K.A. (2019). Improving the Efficiency and Dynamic Properties of a Flow Control Unit in a Self-Locking Compact Electro-Hydraulic Cylinder Drive, In Proceedings of the ASME/BATH 2019 Symposium on Fluid Power and Motion Control, Sarasota, Florida, USA, October 7-9. 2019.
[43] Schmidt, L., Roemer, D.B., Pedersen, H.C., and Andersen, T.O. (2015). Speed-Variable Switched Differential Pump System for Direct Operation of Hydraulic Cylinders, In Proceedings of the ASME/BATH 2015 Symposium on Fluid Power and Motion Control, Chicago, USA, October 14-16. 2015.
[44] Schneider, M., Koch, O., Weber, J., Bach, M., and Jacobs, G. (2014). Green Wheel Loader - Development of an energy efficient drive and control system, In Proceedings of the 9th International Fluid Power Conference, Aachen, Germany, March 24-26. 2014.
[45] Skogestad, S. and Postlethwaite, I. (2005). Multivariable Feedback Control - Analysis and Design, Wiley, 2. edition.
[46] Weber, J., Beck, B., Fischer, E., Ivantysyn, R., Kolks, G., Kunkis, M., Lohse, H., Lubbert, J., Michel, S., Schneider, M., Shabi, L., Sitte, A., Weber, J., and Willkomm, J. (2016). Novel System Architectures by Individual Drives, In In Proceedings of the 10th International Fluid Power Conference, Dresden, Germany, March 8-10. pages 29--62.


BibTeX:
@article{MIC-2020-3-4,
  title={{A Self-Contained Cylinder Drive with Indirectly Controlled Hydraulic Lock}},
  author={Ketelsen, Søren and Andersen, Torben Ole and Ebbesen, Morten K. and Schmidt, Lasse},
  journal={Modeling, Identification and Control},
  volume={41},
  number={3},
  pages={185--205},
  year={2020},
  doi={10.4173/mic.2020.3.4},
  publisher={Norwegian Society of Automatic Control}
};