“Dynamic model for simulating transient behaviour of rotary drum granulation loop”

Authors: Ludmila Vesjolaja, Bjørn Glemmestad and Bernt Lie,
Affiliation: University of South-Eastern Norway and Yara
Reference: 2020, Vol 41, No 2, pp. 65-77.

Keywords: Granulation loop, population balance, layering, agglomeration

Abstract: In this paper, a dynamic model for a rotary drum granulation loop with external product separator is developed. A population balance is used to capture dynamic particle size distribution in the 3-compartment rotary drum granulator model. Particle agglomeration along with particle growth due to layering are assumed as granulation mechanisms in the rotary drum. The model of the granulation loop includes models of the drum, screens and a crusher. Simulations using the developed model provide valuable data on dynamic fluctuations in the inlet and the outlet particle size distribution for the rotary drum. Simulation results showed that at smaller crusher gap spacings, the instabilities of the drum granulation loop occur, and damped oscillations are observed. Above the critical crusher gap spacing, sustained periodic oscillations are observed. The reason for oscillations is the off-spec particle flow that is recycled back to the granulator.

PDF PDF (2478 Kb)        DOI: 10.4173/mic.2020.2.3

DOI forward links to this article:
[1] Ludmila Vesjolaja, Bjorn Glemmestad and Bernt Lie (2020), doi:10.3390/pr8111423
References:
[1] Buck, A., Durr, R., Schmidt, M., and Tsotsas, E. (2016). Buck, A, , Durr, R., Schmidt, M., and Tsotsas, E. Model predictive control of continuous layering granulation in fluidised beds with internal product classification. Journal of Process Control. 45:65--75. doi:10.1016/j.jprocont.2016.07.003
[2] Cameron, I., Wang, F., Immanuel, C., and Stepanek, F. (2005). Cameron, I, , Wang, F., Immanuel, C., and Stepanek, F. Process systems modelling and applications in granulation: A review. Chemical Engineering Science. 60(14):3723--3750. doi:10.1016/j.ces.2005.02.004
[3] Drechsler, J., Peglow, M., Heinrich, S., Ihlow, M., and Moerl, L. (2005). Drechsler, J, , Peglow, M., Heinrich, S., Ihlow, M., and Moerl, L. Investigating the dynamic behaviour of fluidized bed spray granulation processes applying numerical simulation tools. Chemical Engineering Science. 60(14):3817--3833. doi:10.1016/j.ces.2005.02.010
[4] Heinrich, S., Peglow, M., Ihlow, M., and Moerl, L. (2003). Heinrich, S, , Peglow, M., Ihlow, M., and Moerl, L. Particle population modeling in fluidized bed-spray granulation—analysis of the steady state and unsteady behavior. Powder Technology. 130(1-3):154--161. doi:10.1016/S0032-5910(02)00259-0
[5] Herce, C., Gil, A., Gil, M., and Cortes, C. (2017). Herce, C, , Gil, A., Gil, M., and Cortes, C. A cape-taguchi combined method to optimize a npk fertilizer plant including population balance modeling of granulation-drying rotary drum reactor. In Computer Aided Chemical Engineering, volume40, pages 49--54. Elsevier. doi:10.1016/B978-0-444-63965-3.50010-6
[6] Hounslow, M., Ryall, R., and Marshall, V. (1988). Hounslow, M, , Ryall, R., and Marshall, V. A discretized population balance for nucleation, growth, and aggregation. AIChE Journal. 34(11):1821--1832. doi:10.1002/aic.690341108
[7] Hulburt, H. and Katz, S. (1964). Hulburt, H, and Katz, S. Some problems in particle technology: A statistical mechanical formulation. Chemical Engineering Science. 19(8):555--574. .
[8] Iveson, S., Litster, J., Hapgood, K., and Ennis, B. (2001). Iveson, S, , Litster, J., Hapgood, K., and Ennis, B. Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder technology. 117(1-2):3--39. doi:10.1016/S0032-5910(01)00313-8
[9] Kapur, P. (1972). Kapur, P, Kinetics of granulation by non-random coalescence mechanism. Chemical Engineering Science. 27(10):1863--1869. doi:10.1016/0009-2509(72)85048-6
[10] Koren, B. (1993). Koren, B, A robust upwind discretization method for advection, diffusion and source terms. In C.B. Vreugdenhil and B.Koren, editors, Numerical Methods for Advection-Diffusion Problems, Notes on Numerical Fluid Mechanics, pages 117--138. 1993. .
[11] Kumar, J. (2006). Kumar, J, Numerical approximations of population balance equations in particulate systems. Ph.D. thesis, Otto-von-Guericke-Universitat Magdeburg, Universitatsbibliothek. .
[12] Kumar, J., Peglow, M., Warnecke, G., Heinrich, S., and Moerl, L. (2006). Kumar, J, , Peglow, M., Warnecke, G., Heinrich, S., and Moerl, L. Improved accuracy and convergence of discretized population balance for aggregation: The cell average technique. Chemical Engineering Science. 61(10):3327--3342. doi:10.1016/j.ces.2005.12.014
[13] Kumar, S. and Ramkrishna, D. (1996). Kumar, S, and Ramkrishna, D. On the solution of population balance equations by discretization -I. A fixed pivot technique. Chemical Engineering Science. 51(8):1311--1332. doi:10.1016/0009-2509(96)88489-2
[14] Litster, J. and Ennis, B. (2004). Litster, J, and Ennis, B. The science and engineering of granulation processes, volume15. Springer Science & Business Media. .
[15] MATLAB. (2017). MATLAB, The MathWorks, Inc., Natick, Massachusetts, United States., 2017a. .
[16] Molerus, O. and Hoffmann, H. (1969). Molerus, O, and Hoffmann, H. Darstellung von windsichtertrennkurven durch ein stochastisches modell. Chemie Ingenieur Technik. 41(5-6):340--344. doi:10.1002/cite.330410523
[17] Moerl, L. (1981). Moerl, L, Anwendungsmoeglichkeiten und Berechnung von Wirbelschichtgranulationstrocknungsanlagen. Ph.D. thesis, Technische Hochschule Magdeburg. .
[18] Moerl, L., Mittelstrab, M., and Sachse, J. (1977). Moerl, L, , Mittelstrab, M., and Sachse, J. Zum kugelwachstum bei der wirbelschichtrocknung von suspensionen oder losungen. Chemical Technology. 29(10):540--541. .
[19] Radichkov, R., Muller, T., Kienle, A., Heinrich, S., Peglow, M., and Moerl, L. (2006). Radichkov, R, , Muller, T., Kienle, A., Heinrich, S., Peglow, M., and Moerl, L. A numerical bifurcation analysis of continuous fluidized bed spray granulator with external product classification. Chemical Engineering and Processing. 45:826--837. doi:10.1016/j.cep.2006.02.003
[20] Ramachandran, R. and Chaudhury, A. (2012). Ramachandran, R, and Chaudhury, A. Model-based design and control of a continuous drum granulation process. Chemical Engineering Research and Design. 90(8):1063--1073. doi:10.1016/j.cherd.2011.10.022
[21] Ramachandran, R., Immanuel, C.D., Stepanek, F., Litster, J.D., and DoyleIII, F.J. (2009). Ramachandran, R, , Immanuel, C.D., Stepanek, F., Litster, J.D., and DoyleIII, F.J. A mechanistic model for breakage in population balances of granulation: Theoretical kernel development and experimental validation. Chemical Engineering Research and Design. 87(4):598--614. doi:10.1016/j.cherd.2008.11.007
[22] Ramkrishna, D. (2000). Ramkrishna, D, Population balances: Theory and applications to particulate systems in engineering. Academic press. .
[23] Valiulis, G. and Simutis, R. (2009). Valiulis, G, and Simutis, R. Particle growth modelling and simulation in drum granulator-dryer. Information Technology and Control. 38(2). .
[24] Vesjolaja, L., Glemmestad, B., and Lie, B. (2018). Vesjolaja, L, , Glemmestad, B., and Lie, B. Population balance modelling for fertilizer granulation process. Proceedings of The 59th Conference on Simulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway. doi:10.3384/ecp1815395
[25] Wang, F., Ge, X., Balliu, N., and Cameron, I. (2006). Wang, F, , Ge, X., Balliu, N., and Cameron, I. Optimal control and operation of drum granulation processes. Chemical Engineering Science. 61(1):257--267. doi:10.1016/j.ces.2004.11.067


BibTeX:
@article{MIC-2020-2-3,
  title={{Dynamic model for simulating transient behaviour of rotary drum granulation loop}},
  author={Vesjolaja, Ludmila and Glemmestad, Bjørn and Lie, Bernt},
  journal={Modeling, Identification and Control},
  volume={41},
  number={2},
  pages={65--77},
  year={2020},
  doi={10.4173/mic.2020.2.3},
  publisher={Norwegian Society of Automatic Control}
};