“Challenges in application of hybrid switched control to digital hydraulic motors”

Authors: Ioannis Manganas, Torben Ole Andersen, Per Johansen and Lasse Schmidt,
Affiliation: Aalborg University
Reference: 2019, Vol 40, No 2, pp. 125-132.

Keywords: hydraulics, digital hydraulics, hydraulic motor, digital displacement, switched control

Abstract: In this paper, the challenges regarding the application of a switched control approach to a digital displacement machine (DDM) are discussed. The system under consideration is initially presented. Subsequently, the reasons for considering the design and application of the specific, switched controller are discussed. Finally, the challenges are presented, which could function as future research.

PDF PDF (495 Kb)        DOI: 10.4173/mic.2019.2.4

References:
[1] Albea, C., Garcia, G., and Zaccarian, L. (0). Albea, C, , Garcia, G., and Zaccarian, L. Hybrid dynamic modeling and control of switched affine systems: Application to dc-dc converters. In 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan. pages 2264--2269, hal-01220447v3. doi:10.1109/CDC.2015.7402544
[2] Almer, S., Fujioka, H., Jonsson, U., Kao, C.., Patino, D., Riedinger, P., Geyer, T., Beccuti, A., Papafotiou, G., Morari, M., Wernrud, A., and Rantzer, A. (2007). Almer, S, , Fujioka, H., Jonsson, U., Kao, C.., Patino, D., Riedinger, P., Geyer, T., Beccuti, A., Papafotiou, G., Morari, M., Wernrud, A., and Rantzer, A. Hybrid control techniques for switched-mode dc-dc converters part i: The step-down topology. In 2007 American Control Conference. pages 5450--5457. doi:10.1109/ACC.2007.4282214
[3] Artemis Inteligent Power. (2018). Artemis Inteligent Power, Artemis inteligent power, technology. http://www.artemisip.com/technology/, [Online; accessed 19-December-2018.
[4] Beccuti, A.G., Papafotiou, G., Morari, M., Almer, S., Fujioka, H., Jonsson, U., Kao, C.., Wernrud, A., Rantzer, A., Baja, M., Cormerais, H., and Buisson, J. (2007). Beccuti, A, G., Papafotiou, G., Morari, M., Almer, S., Fujioka, H., Jonsson, U., Kao, C.., Wernrud, A., Rantzer, A., Baja, M., Cormerais, H., and Buisson, J. Hybrid control techniques for switched-mode dc-dc converters part ii: The step-up topology. In 2007 American Control Conference. pages 5464--5471. doi:10.1109/ACC.2007.4282799
[5] Chai, J. and Sanfelice, R.G. (2014). Chai, J, and Sanfelice, R.G. A robust hybrid control algorithm for a single-phase dc/ac inverter with variable input voltage. In 2014 American Control Conference. pages 1420--1425. doi:10.1109/ACC.2014.6859476
[6] Chapple, P., N.Lindholdt, P., and B.Larsen, H. (2014). Chapple, P, , N.Lindholdt, P., and B.Larsen, H. An approach to digital distributor valves in low speed pumps and motors. ASME/BATH 2014 Symposium on Fluid Power and Motion Control, FPMC 2014. doi:10.1115/FPMC2014-7861
[7] Deaecto, G. (2010). Deaecto, G, Switched affine systems control design with application to dc-dc converters. IET Control Theory & Applications. 4:1201--1210(9). https://digital-library.theiet.org/content/journals/10.1049/iet-cta.2009.0246. .
[8] Diinef. (2017). Diinef, Diinef-how it works. https://www.diinef.com/technology. [Online; accessed 19-December-2018.
[9] Goebel, R., Sanfelice, R.G., and Teel, A.R. (2009). Goebel, R, , Sanfelice, R.G., and Teel, A.R. Hybrid dynamical systems. IEEE Control Systems Magazine. 29(2):28--93. doi:10.1109/MCS.2008.931718
[10] Hansen, A., Asmussen, M., and Bech, M. (2017). Hansen, A, , Asmussen, M., and Bech, M. Energy optimal tracking control with discrete fluid power systems using model predictive control. In Proceedings of 9th Workshop on Digital Fluid Power, DFP 2017. Department of Energy Technology, Aalborg University. .
[11] Hansen, A., M.Bech, M., and F.Asmussen, M. (2018). Hansen, A, , M.Bech, M., and F.Asmussen, M. Model predictive control of a wave energy converter with discrete fluid power power take-off system. Energies. Energies 2018, 11(3). doi:10.3390/en11030635
[12] Larsen, H.B., Kjelland, M., Holland, A., and Lindholdt, P.N. (2018). Larsen, H, B., Kjelland, M., Holland, A., and Lindholdt, P.N. Digital hydraulic winch drives. In BATH/ASME 2018 Symposium on Fluid Power and Motion Control. ASME. doi:10.1115/FPMC2018-8858
[13] Liberzon, D. (2012). Liberzon, D, Switching in Systems and Control. Systems & Control: Foundations & Applications. Birkhauser Boston. https://books.google.dk/books?id=doDTBwAAQBAJ. .
[14] Nordaas, S., Ebbesen, M.K., and Andersen, T.O. (2017). Nordaas, S, , Ebbesen, M.K., and Andersen, T.O. Feasibility study of a digital hydraulic winch drive system. In The Ninth Workshop on Digital Fluid Power, September 7-8, Aalborg, Denmark. 2017. .
[15] Nordaas, S., Ebbesen, M.K., and Andersen, T.O. (2017). Nordaas, S, , Ebbesen, M.K., and Andersen, T.O. The potential of a digital hydraulic winch drive system. In The Ninth Workshop on Digital Fluid Power, September 7-8, Aalborg, Denmark. 2017. .
[16] Pedersen, N.H. (2018). Pedersen, N, H. Development of Control Strategies For Digital Displacement Units. Ph.D. thesis, Aalborg University. .
[17] Pedersen, N.H., Johansen, P., and Andersen, T.O. (2016). Pedersen, N, H., Johansen, P., and Andersen, T.O. Lqr feedback control development for wind turbines featuring a digital fluid power transmission system. In 9th FPNI Ph.D. Symposium on Fluid Power. 2016. doi:10.1115/FPNI2016-1537
[18] Pedersen, N.H., Johansen, P., and Andersen, T.O. (2017). Pedersen, N, H., Johansen, P., and Andersen, T.O. Feedback control of pulse-density modulated digital displacement transmission using a continuous approximation. IEEE/ASME TRANSACTIONS ON MECHATRONICS. Status: Under 3rd revision. .
[19] Pedersen, N.H., Johansen, P., Hansen, A.H., and Andersen, T.O. (2018). Pedersen, N, H., Johansen, P., Hansen, A.H., and Andersen, T.O. Model Predictive Control of Low-Speed Partial Stroke Operated Digital Displacement Pump Unit. Modeling, Identification and Control. 39(3):167--177. doi:10.4173/mic.2018.3.3
[20] Theunisse, T. A.F., Chai, J., Sanfelice, R.G., and Heemels, W. P. M.H. (2013). Theunisse, T, A.F., Chai, J., Sanfelice, R.G., and Heemels, W. P. M.H. Hybrid control of the boost converter: Robust global stabilization. In 52nd IEEE Conference on Decision and Control. pages 3635--3640. doi:10.1109/CDC.2013.6760442
[21] Theunisse, T. A.F., Chai, J., Sanfelice, R.G., and Heemels, W. P. M.H. (2015). Theunisse, T, A.F., Chai, J., Sanfelice, R.G., and Heemels, W. P. M.H. Robust global stabilization of the dc-dc boost converter via hybrid control. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015. 62(4):1052--1061. doi:10.1109/TCSI.2015.2413154


BibTeX:
@article{MIC-2019-2-4,
  title={{Challenges in application of hybrid switched control to digital hydraulic motors}},
  author={Manganas, Ioannis and Andersen, Torben Ole and Johansen, Per and Schmidt, Lasse},
  journal={Modeling, Identification and Control},
  volume={40},
  number={2},
  pages={125--132},
  year={2019},
  doi={10.4173/mic.2019.2.4},
  publisher={Norwegian Society of Automatic Control}
};