“Challenges with Respect to Control of Digital Displacement Hydraulic Units”

Authors: Niels Henrik Pedersen, Per Johansen and Torben Ole Andersen,
Affiliation: Aalborg University
Reference: 2018, Vol 39, No 2, pp. 91-105.

Keywords: Digital Displacement Units, Fluid Power, Control, Non-smooth System, Hybrid Systems

Abstract: This paper investigates the many complications arising when controlling a digital displacement hydraulic machine with non-smooth dynamical behavior. The digital hydraulic machine has a modular construction with numerous independently controlled pressure chambers. For proper control of dynamical systems, a model representation of the systems fundamental dynamics is required for transient analysis and controller design. Since the input is binary (active or inactive) and it may only be updated discretely, the machine comprises both continuous and discrete dynamics and therefore belongs to the class of hybrid dynamical systems. The study shows that the dynamical system behavior and control complexity are greatly dependent on the configuration of the machine, the operation strategy, and in which application it is used. Although the system has non-smooth dynamics, the findings show that simple continuous and discrete approximations may be applicable for control development in certain situations, whereas more advanced hybrid control theory is necessary to cover a broader range of situations.

PDF PDF (1849 Kb)        DOI: 10.4173/mic.2018.2.4

DOI forward links to this article:
[1] Niels Henrik Pedersen, Per Johansen, Anders Hedegaard Hansen and Torben Ole Andersen (2018), doi:10.4173/mic.2018.3.3
[2] Sondre Nordås, Michael M. Beck, Morten K. Ebbesen and Torben O. Andersen (2019), doi:10.3390/en12091737
[3] V. Lakshmi Narayanan and R. Ramakrishnan (2020), doi:10.1080/15435075.2020.1814300
[4] Pedro La Hera, Daniel Ortiz Morales and Omar Mendoza-Trejo (2021), doi:10.1016/j.compag.2021.106037
[5] Ruichuan Li, Qiyou Sun, Xinkai Ding, Yisheng Zhang, Wentao Yuan and Tong Wu (2022), doi:10.3390/pr10122482
[6] Thomas Farsakoglou, Henrik C. Pedersen, Morten K. Ebbesen and Torben Ole Andersen (2023), doi:10.4173/mic.2023.3.2
[7] Thomas Farsakoglou, Henrik C. Pedersen, Morten K. Ebbesen and Torben O. Andersen (2023), doi:10.3390/en16217371
References:
[1] Armstrong, B. S.R. and Yuan, Q. (2006). Armstrong, B, S.R. and Yuan, Q. Multi-level control of hydraulic gerotor motors and pumps. Proceedings of the american control conference, Minnesota, USA. doi:10.1109/ACC.2006.1657450
[2] Bender, N.C., Pedersen, H.C., and Andersen, T.O. (2018). Bender, N, C., Pedersen, H.C., and Andersen, T.O. Multiagent evolution algorithm for control of a repetitive non-linear dynamic system. Submitted to the ASME/BATH Symposium on Fluid Power and Motion Control, Bath, UK, 2018. .
[3] Bender, N.C., Pedersen, H.C., Winkler, B., and Plöckinger, A. (2018). Bender, N, C., Pedersen, H.C., Winkler, B., and Plöckinger, A. Modeling transient flow phenomena in hydraulic seat valve with annular flow geometry. Submitted to the International Journal Fluid Power, 2018. .
[4] Breidi, F.E. (2016). Breidi, F, E. Investigation of digital pump/motor control strategies. Ph.D. thesis, Purdue University, West Lafayette. http://docs.lib.purdue.edu/open_access_dissertations/752, .
[5] Brendi, F., Garrity, J., and Lumkes, J. (2017). Brendi, F, , Garrity, J., and Lumkes, J. Investigation of a real-time pressure based valve timing correction algorithm. Proceedings of the ASME/BATH Symposium on Fluid Power and Motion Control. doi:10.1115/FPMC2017-4342
[6] Brogliato, B. (2016). Brogliato, B, Nonsmooth Mechanics - Models, Dynamics and Control (third edition). Springer, ISBN: 978-1-4471-0557-2. .
[7] Ehsan, M., Rampen, W., and Salter, S. (1997). Ehsan, M, , Rampen, W., and Salter, S. Modeling of digital-displacement pump-motors and their application as hydraulic drives for nonuniform loads. ASME. J. Dyn. Sys., Meas., Control.. doi:10.1115/1.482444
[8] Goebel, R., Sanfelice, R.G., and Teel, A.R. (2009). Goebel, R, , Sanfelice, R.G., and Teel, A.R. Hybrid dynamical systems. IEEE Control Systems Magazine, Vol. 29, Iss. 2, pp. 28-93, 2009. doi:10.1109/MCS.2008.931718
[9] Hansen, A.H. and Pedersen, H.C. (2016). Hansen, A, H. and Pedersen, H.C. Optimal configuration of a discrete fluid power force system utilised in the PTO for WECs. Ocean Engineering. doi:10.1016/j.oceaneng.2016.03.032
[10] Hansen, R.H., Andersen, T.O., Pedersen, H.C., and Hansen, A.H. (2014). Hansen, R, H., Andersen, T.O., Pedersen, H.C., and Hansen, A.H. Control of a 420 kN Discrete Displacement Cylinder Drive for the Wavestar Wave Energy Converter. In ASME/BATH 2014 Symposium on Fluid Power and Motion Control. 2014. doi:10.1115/FPMC2014-7833
[11] Heikkila, M. and Linjama, M. (2013). Heikkila, M, and Linjama, M. Displacement control of a mobile crane using digital hydraulic power management system. Mechatronics Volume 23, Issue 4, Pages 452-461. doi:10.1016/j.mechatronics.2013.03.009
[12] Jarf, A., Minav, T., and Pietola, M. (2016). Jarf, A, , Minav, T., and Pietola, M. Nonsymmetrical flow compensation using hydraulic accumulator in direct driven differential cylinder application. Proceedings of the 9th FPNI Ph.D. Symposium on Fluid Power, Florianópolis, Brazil. doi:10.1115/FPNI2016-1516
[13] Johansen, P. (2014). Johansen, P, Tribodynamic Modeling of Digital Fluid Power Motors. Ph.D. thesis, Energy Technology, Aalborg University, Denmark. .
[14] Johansen, P., Roemer, D.B., Andersen, T.O., and Pedersen, H.C. (2015). Johansen, P, , Roemer, D.B., Andersen, T.O., and Pedersen, H.C. Delta-sigma modulated displacement of a digital fluid power pump. The 7th workshop on digital fluid power, Linz, Austria, 2015. .
[15] Johansen, P., Roemer, D.B., Andersen, T.O., and Pedersen, H.C. (2015). Johansen, P, , Roemer, D.B., Andersen, T.O., and Pedersen, H.C. On the Influence of Piston and Cylinder Density in Tribodynamics of a Radial Piston Digital Fluid Power Displacement Motor. In ASME/BATH 2015 Symposium on Fluid Power and Motion Control. 2015. doi:10.1115/FPMC2015-9608
[16] Johansen, P., Roemer, D.B., Pedersen, H.C., and Andersen, T.O. (2017). Johansen, P, , Roemer, D.B., Pedersen, H.C., and Andersen, T.O. Discrete linear time invariant analysis of digital fluid power pump flow control. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, Vol. 139. doi:10.1115/1.4036554
[17] Merrill, K.J. (2012). Merrill, K, J. Modeling and analysis of active valve control of a digital pump-motor. Ph.D. thesis, Purdue University, West Lafayette. https://docs.lib.purdue.edu/dissertations/AAI3544301. .
[18] Noergaard, C. (2017). Noergaard, C, Design, Optimization and Testing of Valves for Digital Displacement Machines. Ph.D. thesis, Department of Energy Technology, Aalborg University, Denmark. doi:10.5278/vbn.phd.eng.00013
[19] Payne, G.S., Kiprakis, A.E., Ehsan, M., Rampen, W., Chick, J.P., and Wallace, A.R. (2007). Payne, G, S., Kiprakis, A.E., Ehsan, M., Rampen, W., Chick, J.P., and Wallace, A.R. Efficiency and dynamic performance of digital displacement hydraulic transmission in tidal current energy converters. Journal of Power and Energy, Proc. IMechE, Vol. 221, Part A, pp. 207-218.. doi:10.1243/09576509JPE298
[20] Payne, G.S., Stein, U. P.P., Ehsan, M., Caldwell, N.J., and Rampen, W. H.S. (2005). Payne, G, S., Stein, U. P.P., Ehsan, M., Caldwell, N.J., and Rampen, W. H.S. Potential of digital displacement hydraulics for wave energy conversion. In Proc. of the 6th European Wave and TIdal Energy Conference, Glasgow UK.. .
[21] Pedersen, H.C., Hansen, R.H., Hansen, A.H., Andersen, T.O., and Bech, M.M. (2016). Pedersen, H, C., Hansen, R.H., Hansen, A.H., Andersen, T.O., and Bech, M.M. Design of full scale wave simulator for testing power take off systems for wave energy converters. International Journal of Marine Energy, Vol. 13, pp. 130-156, 2016. doi:10.1016/j.ijome.2016.01.005
[22] Pedersen, N.H., Johansen, P., and Andersen, T.O. (2016). Pedersen, N, H., Johansen, P., and Andersen, T.O. Lqr feedback control development for wind turbines featuring a digital fluid power transmission system. Proceedings of the 9th FPNI Ph.D. Symposium on Fluid Power. American Society of Mechanical Engineers, 2016. doi:10.1115/FPNI2016-1537
[23] Pedersen, N.H., Johansen, P., and Andersen, T.O. (2017). Pedersen, N, H., Johansen, P., and Andersen, T.O. Event-driven control of a speed varying digital displacement machine. Proceedings of the 2017 Bath/ASME Symposium on Fluid Power and Motion Control, 2017. doi:10.1115/FPMC2017-4260
[24] Pedersen, N.H., Johansen, P., and Andersen, T.O. (2017). Pedersen, N, H., Johansen, P., and Andersen, T.O. Optimal control of a wind turbine with digital fluid power transmission. Nonlinear Dyn. 91: 591, 2017. doi:10.1007/s11071-017-3896-0
[25] Pedersen, N.H., Johansen, P., and Andersen, T.O. (2018). Pedersen, N, H., Johansen, P., and Andersen, T.O. Feedback control of multi-level pulse-density modulated digital displacement transmission. Submitted to IEEE/ASME Transaction on Mecatronics, 2018. .
[26] Pedersen, N.H., Johansen, P., and Andersen, T.O. (2018). Pedersen, N, H., Johansen, P., and Andersen, T.O. Four quadrant hybrid control oriented dynamical system model of digital displacement units. Submitted to the 2018 Bath/ASME Symposium on Fluid Power and Motion Control, 2018. .
[27] Pedersen, N.H., Johansen, P., and Andersen, T.O. (2018). Pedersen, N, H., Johansen, P., and Andersen, T.O. Model predictive control and discrete analysis of partial stroke operated digital displacement machine. Submitted to the Global Fluid Power Society PhD Symposium, 2018. .
[28] Pedersen, N.H., Johansen, P., Andersen, T.O., and Scheidl, R. (2017). Pedersen, N, H., Johansen, P., Andersen, T.O., and Scheidl, R. Non-linear hybrid control oriented modelling of a digital displacement machine. The Ninth Workshop on Digital Fluid Power, September 7-8, Aalborg, Denmark, 2017. .
[29] Pedersen, N.H., Johansen, P., Andersen, T.O., and Scheidl, R. (2018). Pedersen, N, H., Johansen, P., Andersen, T.O., and Scheidl, R. Discrete optimal control and potential analysis of a digital direct hydraulic cylinder drive. Submitted to Elsevier Journal of Mechatronics, 2018. .
[30] Pedersen, N.H., Johansen, P., Hansen, A.H., and Andersen, T.O. (2018). Pedersen, N, H., Johansen, P., Hansen, A.H., and Andersen, T.O. Model predictive control of low-speed partial stroke operated digital displacement pump unit. Submitted to Journal of Model, Identification and Control, 2018. .
[31] Rampen, W. (2006). Rampen, W, Gearless transmissions for large wind turbines – the history and future of hydraulic drives. Bremen. .
[32] Rampen, W. (2010). Rampen, W, The development of digital displacement technology. In Proceedings of Bath/ASME FPMC Symposium. .
[33] Roemer, D.B. (2014). Roemer, D, B. Design and Optimization of Fast Switching Valves for Large Scale Digital Hydraulic Motors. Ph.D. thesis, Department of Energy Technology, Aalborg University, 2014. Department of Energy Technology, Aalborg University. .
[34] Roemer, D.B., Johansen, P., Pedersen, H.C., and Andersen, T.O. (2013). Roemer, D, B., Johansen, P., Pedersen, H.C., and Andersen, T.O. Design and modelling of fast switching efficient seat valves for digital displacement pumps. Transactions of the Canadian Society for Mechanical Engineering. 37(1):71--88. doi:10.1139/tcsme-2013-0005
[35] Roemer, D.B., Johansen, P., Pedersen, H.C., and Andersen, T.O. (2014). Roemer, D, B., Johansen, P., Pedersen, H.C., and Andersen, T.O. Oil Stiction in Fast Switching Annular Seat Valves for Digital Displacement Fluid Power Machines. In Proceedings of the 12th Biennial Conference on Engineering Systems Design and Analysis. 2014. doi:10.1115/ESDA2014-20443
[36] Roemer, D.B., Johansen, P., Pedersen, H.C., and Andersen, T.O. (2015). Roemer, D, B., Johansen, P., Pedersen, H.C., and Andersen, T.O. Fluid Stiction Modeling for Quickly Separating Plates Considering the Liquid Tensile Strength. Journal of Fluids Engineering, 2015. doi:10.1115/1.4029683
[37] Roemer, D.B., Johansen, P., Schmidt, L., and Andersen, T.O. (2015). Roemer, D, B., Johansen, P., Schmidt, L., and Andersen, T.O. Modeling of Movement-Induced and Flow-Induced Fluid Forces in Fast Switching Valves. In Inter. Conf. Fluid Power and Mechatronics. 2015. doi:10.1109/FPM.2015.7337257
[38] Salter, S.H., Taylor, J. R.M., and Caldwell, N.J. (2002). Salter, S, H., Taylor, J. R.M., and Caldwell, N.J. Power conversion mechanisms for wave energy. Journal of Engineering for the Maritime Environment, pp. 1-27, 2002. doi:10.1243/147509002320382103
[39] Schmidt, L., Roemer, D.B., Pedersen, H.C., and Andersen, T.O. (2015). Schmidt, L, , Roemer, D.B., Pedersen, H.C., and Andersen, T.O. Speed-variable switched differential pump system for direct operation of hydraulic cylinders. Proceedings of ASME/BATH 2015 Symposium on Fluid Power and Motion Control, American Society of Mechanical Engineers. doi:10.1115/FPMC2015-9575
[40] Sniegucki, M., Gottfried, M., and Klingauf, U. (2013). Sniegucki, M, , Gottfried, M., and Klingauf, U. Optimal control of digital hydraulic drives using mixed-integer quadratic programming. Proceedings of the 9th IFAC Symposium on Nonlinear Control Systems. doi:10.3182/20130904-3-FR-2041.00013
[41] Song, X. (2008). Song, X, Modeling and active vehicle suspension system with application of digital displacement pump motor. Proceedings of the ASME 2008 International Design Engineering Techical Conferences & Computers and Information in Engineering Conference, New York, USA. doi:10.1115/DETC2008-49035
[42] Teel, A.R., Sanfelice, R.G., and Goebel, R. (2015). Teel, A, R., Sanfelice, R.G., and Goebel, R. Feedback control of hybrid dynamical systems. Encyclopedia of Systems and Control. doi:10.1007/978-1-4471-5102-9_271-2


BibTeX:
@article{MIC-2018-2-4,
  title={{Challenges with Respect to Control of Digital Displacement Hydraulic Units}},
  author={Pedersen, Niels Henrik and Johansen, Per and Andersen, Torben Ole},
  journal={Modeling, Identification and Control},
  volume={39},
  number={2},
  pages={91--105},
  year={2018},
  doi={10.4173/mic.2018.2.4},
  publisher={Norwegian Society of Automatic Control}
};