“A Semi-Heuristic Process-Reaction Curve PID Controller Tuning Method”

Authors: Christer Dalen and David Di Ruscio,
Affiliation: University of South-Eastern Norway
Reference: 2018, Vol 39, No 1, pp. 37-43.

Keywords: PID controller, tuning, double integrating system, relative time delay error, semi-heuristic, robustness, performance, Pareto-Optimal, Process-Reaction Curve, Ziegler-Nichols, lag

Abstract: A simple semi-heuristic method for designing PID controllers for time constant models are shown to be close to optimal. A Process-Reaction Curve method is proposed, composed by a method for approximating stable time constant models with an unstable DIPTD model, and relative time delay error delta-PID controller tuning. The Pareto-Optimal controller is used as reference.

PDF PDF (508 Kb)        DOI: 10.4173/mic.2018.1.4

DOI forward links to this article:
[1] Christer Dalen and David Di Ruscio (2018), doi:10.4173/mic.2018.4.4
[2] Christer Dalen and David Di Ruscio (2019), doi:10.4173/mic.2019.4.2
[1] Aastrom, K.J., Panagopoulos, H., and Haegglund, T. (1998). Aastrom, K, J., Panagopoulos, H., and Haegglund, T. Design of pi controllers based on non-convex optimization. Automatica. 34(5):585--601. doi:10.1016/S0005-1098(98)00011-9
[2] Balchen, J. (1958). Balchen, J, A Performance Index for Feedback Control Systems Based on the Fourier Transform of the Control Deviation. Acta polytechnica Scandinavica: Mathematics and computing machinery series. Norges tekniske vitenskapsakademi. .
[3] Balchen, J.G., Andresen, T., and Foss, B.A. (1999). Balchen, J, G., Andresen, T., and Foss, B.A. Reguleringsteknikk. Tapir. In norwegian. First edition. .
[4] Balchen, J.G. and Lie, B. (1987). Balchen, J, G. and Lie, B. An Adaptive Controller Based upon Continuous Estimation of the Closed Loop Frequency Response. Modeling, Identification and Control. 8(4):223--240. doi:10.4173/mic.1987.4.3
[5] Cohen, G. and Coon, G. (1952). Cohen, G, and Coon, G. Theoretical consideration of retarded control. Transactions of ASME. 75(1):827--834. doi:10.4173/mic.2017.4.3
[6] Coughanowr, D. (1991). Coughanowr, D, Process Systems Analysis and Control. McGraw-Hill chemical engineering series. McGraw-Hill. .
[7] Dalen, C. and DiRuscio, D. (2017). Dalen, C, and DiRuscio, D. PD/PID controller tuning based on model approximations: Model reduction of some unstable and higher order nonlinear models. Modeling, Identification and Control. 38(4):185--197. doi:10.4173/mic.2017.4.3
[8] DiRuscio, D. (1996). DiRuscio, D, Combined Deterministic and Stochastic System Identification and Realization: DSR - A Subspace Approach Based on Observations. Modeling, Identification and Control. 17(3):193--230. doi:10.4173/mic.1996.3.3
[9] DiRuscio, D. (2009). DiRuscio, D, Closed and Open Loop Subspace System Identification of the Kalman Filter. Modeling, Identification and Control. 30(2):71--86. doi:10.4173/mic.2009.2.3
[10] DiRuscio, D. and Dalen, C. (2017). DiRuscio, D, and Dalen, C. Tuning PD and PID Controllers for Double Integrating Plus Time Delay Systems. Modeling, Identification and Control. 38(2):95--110. doi:10.4173/mic.2017.2.4
[11] Grimholt, C. and Skogestad, S. (2016). Grimholt, C, and Skogestad, S. Optimization of fixed-order controllers using exact gradients. 2016. http://folk.ntnu.no/skoge/publications/2016/grimholt-jpc-pid-exact-gradient/main.pdf, Unpublished. .
[12] Ljung, L. (1999). Ljung, L, System Identification (2nd ed.): Theory for the User. Prentice Hall PTR, Upper Saddle River, NJ, USA. .
[13] Luyben, W. (1990). Luyben, W, Process Modeling, Simulation, and Control for Chemical Engineers. Chemical engineering series. McGraw-Hill. .
[14] MATLAB. (2016). MATLAB, Version (R2016b). The MathWorks Inc., Natick, Massachusetts, USA. Control System Toolbox, Version 9.3. Optimization Toolbox, Version 6.2. .
[15] R.Kumar, V.C., S.K.Singla. (2015). R, Kumar, V.C., S.K.Singla. Comparison among some well known control schemes with different tuning methods. Journal of Applied Research and Technology. 13(3):409 -- 415. doi:10.1016/j.jart.2015.07.007
[16] Seborg, D., Edgar, T., and Mellichamp, D. (2004). Seborg, D, , Edgar, T., and Mellichamp, D. Process dynamics and control. Wiley series in chemical engineering. Wiley. .
[17] Skogestad, S. (2003). Skogestad, S, Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control. 13(13):291--309. doi:10.1016/S0959-1524(02)00062-8
[18] Skogestad, S. and Grimholt, C. (2012). Skogestad, S, and Grimholt, C. The SIMC Method for Smooth PID Controller Tuning, pages 147--175. Springer London, London. doi:10.1007/978-1-4471-2425-2_5
[19] Smith, C. and Corripio, A. (1997). Smith, C, and Corripio, A. Principles and practice of automatic process control. J. Wiley. .
[20] Ziegler, J. and Nichols, N.B. (1942). Ziegler, J, and Nichols, N.B. Optimum settings for automatic controllers. Trans. of the A.S.M.E.. 64(64):759--768. .

  title={{A Semi-Heuristic Process-Reaction Curve PID Controller Tuning Method}},
  author={Dalen, Christer and Di Ruscio, David},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}