“Feasibility Study of Electromechanical Cylinder Drivetrain for Offshore Mechatronic Systems”

Authors: Daniel Hagen, Witold Pawlus, Morten K. Ebbesen and Torben Ole Andersen,
Affiliation: University of Agder and Aalborg University
Reference: 2017, Vol 38, No 2, pp. 59-77.

Keywords: Mechatronic systems, offshore drilling, hydraulic actuation systems, electromechanical cylinder, modeling and simulation, multibody systems, motion control

Abstract: Currently, there is an increasing focus on the environmental impact and energy consumption of the oil and gas industry. In offshore drilling equipment, electric motors tend to replace traditionally used hydraulic motors, especially in rotational motion control applications. However, force densities available from linear hydraulic actuators are still typically higher than those of electric actuators. Therefore, usually the remaining source of hydraulic power is thereby the hydraulic cylinder. This paper presents a feasibility study on the implementation of an electromechanical cylinder drivetrain on an offshore vertical pipe handling machine. The scope of this paper is to investigate the feasibility of a commercial off-the-shelf drivetrain. With a focus on the motion performance, numerical modeling and simulation are used when sizing and selecting the components of the considered electromechanical cylinder drivetrain. The simulation results are analyzed and discussed together with a literature study regarding advantages and disadvantages of the proposed solution considering the design criteria of offshore drilling equipment. It is concluded that the selected drivetrain can only satisfy the static motion requirements since the required transmitted power is higher than the recommended permissible power of the transmission screw. Consequently, based on the recommendation of the manufacturer, avoidance of overheating cannot be guaranteed for the drivetrain combinations considered for the case study presented in this paper. Hence, to avoid overheating, the average speed of the motion cycle must be decreased. Alternatively, external cooling or temperature monitoring and control system that prevents overheating could be implemented.

PDF PDF (3710 Kb)        DOI: 10.4173/mic.2017.2.2

DOI forward links to this article:
[1] Søren Ketelsen, Lasse Schmidt, Viktor Hristov Donkov and Torben Ole Andersen (2018), doi:10.4173/mic.2018.2.3
[2] Damiano Padovani, Søren Ketelsen, Daniel Hagen and Lasse Schmidt (2019), doi:10.3390/en12020292
[3] Søren Ketelsen, Damiano Padovani, Torben Andersen, Morten Ebbesen and Lasse Schmidt (2019), doi:10.3390/en12071293
[4] Daniel Hagen, Damiano Padovani, Martin Choux, Daniel Hagen, Damiano Padovani and Martin Choux (2019), doi:10.4173/mic.2019.2.2
[5] Daniel Hagen, Damiano Padovani and Martin Choux (2019), doi:10.3390/act8040078
[6] Soren Ketelsen, Torben Ole Andersen, Morten K. Ebbesen and Lasse Schmidt (2020), doi:10.4173/mic.2020.3.4
[7] Daniel Hagen, Damiano Padovani and Martin Choux (2020), doi:10.1109/ICIEA48937.2020.9248373
[8] David Fassbender and Tatiana Minav (2021), doi:10.3390/act10060111
[9] Konrad Johan Jensen, Morten Kjeld Ebbesen and Michael Rygaard Hansen (2021), doi:10.3390/en14206566
[10] Daniel Hagen, Damiano Padovani and Morten K. Ebbesen (2018), doi:10.1109/GFPS.2018.8472360
[11] Brendan Deibert and Travis Wiens (2022), doi:10.3390/act11110334
References:
[1] Austigard, A. (2016). Austigard, A, Robotic Drilling Systems. http://rds.no, Accessed: 2017-03-03. .
[2] Bak, M.K. (2014). Bak, M, K. Model Based Design of Electro-Hydraulic Motion Control Systems for Offshore Pipe Handling Equipment. Ph.D. thesis, University of Agder. .
[3] Bak, M.K. and Hansen, M.R. (2013). Bak, M, K. and Hansen, M.R. Analysis of Offshore Knuckle Boom Crane - Part One: Modeling and Parameter Identification. Modeling, Identification and Control: A Norwegian Research Bulletin. 34(4):157--174. doi:10.4173/mic.2013.4.1
[4] Balaban, E., Bansal, P., Stoelting, P., Saxena, A., Goebel, K.F., and Curran, S. (2009). Balaban, E, , Bansal, P., Stoelting, P., Saxena, A., Goebel, K.F., and Curran, S. A diagnostic approach for electro-mechanical actuators in aerospace systems. In 2009 IEEE Aerospace conference. IEEE, pages 1--13. doi:10.1109/AERO.2009.4839661
[5] Bodden, D.S., Clements, N.S., Schley, B., and Jenney, G. (2007). Bodden, D, S., Clements, N.S., Schley, B., and Jenney, G. Seeded Failure Testing and Analysis of an Electro-Mechanical Actuator. In 2007 IEEE Aerospace Conference. IEEE, pages 1--8. doi:10.1109/AERO.2007.352880
[6] Bosch Rexroth. (2006). Bosch Rexroth, IndraDyn S - MSK Project Planning Manual. 2006. .
[7] Bosch Rexroth. (2015). Bosch Rexroth, Electrical Mechanical Cylinder EMC-HD Catalog. 2015. .
[8] Couper, J.R., Penney, W.R., Fair, J.R., and Walas, S.M. (2012). Couper, J, R., Penney, W.R., Fair, J.R., and Walas, S.M. Chemical Process Equipment -- Selection and Design. Elsevier, 3rd edition edition. .
[9] European Commission. (2014). European Commission, Directive 2014/34/EU of the European Parliament and of the Council. Official Journal of the European Union L96. .
[10] Frischemeier, S. (1997). Frischemeier, S, Electrohydrostatic actuators for aircraft primary flight control-types, modelling and evaluation. In 5th Scandinavian International Conference on Fluid Power, SICFP '97, Linkoping, Sweden, May 28. -30. pages 1--16. doi:10.15480/882.236
[11] Fu, Y., Wang, D., Chen, J., Yang, R., and Qi, X. (2015). Fu, Y, , Wang, D., Chen, J., Yang, R., and Qi, X. Nonlinear Modeling and System Analysis of the Linear Electromechanical Actuators Deviation of Nonlinear Dynamic Modeling. Journal of Computational Information Systems. 6(11):1983--1995. doi:10.12733/jcis13671
[12] Gallant, T.A. and Andrews, K.M. (2006). Gallant, T, A. and Andrews, K.M. Large cage induction motors for offshore machinery drive applications. In Petroleum and Chemical Industry Conference. pages 1155--1159. .
[13] Garcia, A., Cusido, J., Rosero, J., Ortega, J., and Romeral, L. (2008). Garcia, A, , Cusido, J., Rosero, J., Ortega, J., and Romeral, L. Reliable electro-mechanical actuators in aircraft. IEEE Aerospace and Electronic Systems Magazine. 23(8):19--25. doi:10.1109/MAES.2008.4607895
[14] Hoevenaars, A.H., Evans, I.C., and Desai, B. (2013). Hoevenaars, A, H., Evans, I.C., and Desai, B. Preventing AC drive failures due to commutation notches on a drilling rig. IEEE Transactions on Industry Applications. 49(3):1215--1220. doi:10.1109/TIA.2013.2253078
[15] Hojjat, Y. and Mahdi Agheli, M. (2009). Hojjat, Y, and Mahdi Agheli, M. A comprehensive study on capabilities and limitations of roller-screw with emphasis on slip tendency. Mechanism and Machine Theory. 44(10):1887--1899. doi:10.1016/j.mechmachtheory.2009.04.001
[16] Holm, R.K., Berg, N.I., Walkusch, M., Rasmussen, P.O., and Hansen, R.H. (2013). Holm, R, K., Berg, N.I., Walkusch, M., Rasmussen, P.O., and Hansen, R.H. Design of a magnetic lead screw for wave energy conversion. IEEE Transactions on Industry Applications. 49(6):2699--2708. doi:10.1109/TIA.2013.2264272
[17] Isermann, R., Schwarz, R., and Stolzl, S. (2002). Isermann, R, , Schwarz, R., and Stolzl, S. Fault-tolerant drive-by-wire systems. IEEE Control Systems. 22(5):64--81. doi:10.1109/MCS.2002.1035218
[18] Kandukuri, S.T., Klausen, A., Karimi, H.R., and Robbersmyr, K.G. (2016). Kandukuri, S, T., Klausen, A., Karimi, H.R., and Robbersmyr, K.G. A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management. Renewable and Sustainable Energy Reviews. 53:697 -- 708. doi:10.1016/j.rser.2015.08.061
[19] Lemor, P. (1996). Lemor, P, The roller screw, an efficient and reliable mechanical component of electro-mechanical actuators. In IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference, volume1. IEEE, pages 215--220. doi:10.1109/IECEC.1996.552873
[20] Michel, S. and Weber, J. (2012). Michel, S, and Weber, J. Energy-efficient electrohydraulic compact drives for low power applications. Fluid Power and Motion Control (FPMC 2012). pages 94--108. .
[21] Narasimhan, S., Roychoudhury, I., Balaban, E., and Saxena, A. (2010). Narasimhan, S, , Roychoudhury, I., Balaban, E., and Saxena, A. Combining Model-Based and Feature-DrivenFeature-Driven Diagnosis Approaches – A Case Study on Electromechanical Actuators. 21st International Workshop on Principles of Diagnosis. pages 1--9. .
[22] Neleman, K. (2009). Neleman, K, Motor controls for Ex motors in hazardous areas: An application guide! In 2009 Conference Record PCIC Europe. pages 132--145. .
[23] Nikravesh, P.E. (1988). Nikravesh, P, E. COMPUTER-AIDED ANALYSIS OF MECHANICAL SYSTEMS. Prentice Hall. .
[24] Nikravesh, P.E. (2008). Nikravesh, P, E. PLANAR MULTIBODY DYNAMICS. CRC Press - Taylor & Francis Group. .
[25] Ottestad, M., Nilsen, N., and Hansen, M. (2012). Ottestad, M, , Nilsen, N., and Hansen, M. Reducing the static friction in hydraulic cylinders by maintaining relative velocity between piston and cylinder. In International Conference on Control, Automation and Systems. pages 764--769. .
[26] Parker. (2013). Parker, Extreme Force Electromechanical Cylinder Catalog. 2013. .
[27] Pawlus, W. (2016). Pawlus, W, Design and Analysis of Electric Powertrains for Offshore Drilling Applications. Ph.D. thesis, University of Agder. .
[28] Pawlus, W., Choux, M., and Hansen, M.R. (2016). Pawlus, W, , Choux, M., and Hansen, M.R. Hydraulic vs. electric: A review of actuation systems in offshore drilling equipment. Modeling, Identification and Control, 2016. 37(1):1--17. doi:10.4173/mic.2016.1.1
[29] Pawlus, W., Frick, D., Morari, M., Hovland, G., and Choux, M. (2015). Pawlus, W, , Frick, D., Morari, M., Hovland, G., and Choux, M. Drivetrain design optimization for electrically actuated systems via Mixed Integer Programing. In Industrial Electronics Society, IECON 2015 - 41st Annual Conference of the IEEE. pages 1465--1470. doi:10.1109/IECON.2015.7392307
[30] Pawlus, W., Hansen, M.R., Choux, M., and Hovland, G. (2016). Pawlus, W, , Hansen, M.R., Choux, M., and Hovland, G. Mitigation of fatigue damage and vibration severity of electric drivetrains by systematic selection of motion profiles. IEEE/ASME Transactions on Mechatronics, 2016. 21(6):2870--2880. doi:10.1109/TMECH.2016.2573587
[31] Pawlus, W., Khang, H.V., and Hansen, M. (2016). Pawlus, W, , Khang, H.V., and Hansen, M. Temperature rise estimation of induction motor drives based on loadability curves to facilitate design of electric powertrains. IEEE Transactions on Industrial Informatics. doi:10.1109/TII.2016.2641454
[32] Pillay, P. and Krishnan, R. (1989). Pillay, P, and Krishnan, R. Modeling, simulation, and analysis of permanent-magnet motor drives. The permanent-magnet synchronous motor drive. Industry Applications, IEEE Transactions on. 25(2):265--273. doi:10.1109/28.25541
[33] Rahimi, M., Rausand, M., and Wu, S. (2011). Rahimi, M, , Rausand, M., and Wu, S. Reliability prediction of offshore oil and gas equipment for use in an Arctic environment. In International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering. pages 81--86. .
[34] Sakuraba, J., Hata, F., Kung, C.C., Sotooka, K., Mori, H., and Takarada, N. (1992). Sakuraba, J, , Hata, F., Kung, C.C., Sotooka, K., Mori, H., and Takarada, N. Development of superconducting electric ship propulsion system. In The Second International Offshore and Polar Engineering Conference. pages 1--7. .
[35] Schinstock, D. and Haskew, T. (1996). Schinstock, D, and Haskew, T. Dynamic load testing of roller screw EMAs. In IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference, volume1. IEEE, pages 221--226. doi:10.1109/IECEC.1996.552874
[36] Sorensen, J.K. (2016). Sorensen, J, K. Reduction of Oscillations in Hydraulically Actuated Knuckle Boom Cranes. Ph.D. thesis, University of Agder. .
[37] Ummaneni, R.B., Nilssen, R., and Brennvall, J.E. (2007). Ummaneni, R, B., Nilssen, R., and Brennvall, J.E. Force analysis in design of high power linear permanent magnet actuator with gas springs in drilling applications. In Electric Machines Drives Conference. IEMDC '07. IEEE International. pages 285--288. doi:10.1109/IEMDC.2007.382680
[38] Wang, Z., Chen, J., Cheng, M., and Chau, K.T. (2016). Wang, Z, , Chen, J., Cheng, M., and Chau, K.T. Field-oriented control and direct torque control for paralleled vsis fed pmsm drives with variable switching frequencies. IEEE Transactions on Power Electronics. 31(3):2417--2428. doi:10.1109/TPEL.2015.2437893
[39] Yadav, P., Kumar, R., Panda, S.K., and Chang, C.S. (2014). Yadav, P, , Kumar, R., Panda, S.K., and Chang, C.S. Optimal thrust allocation for semisubmersible oil rig platforms using improved harmony search algorithm. IEEE Journal of Oceanic Engineering. 39(3):526--539. doi:10.1109/JOE.2013.2270017


BibTeX:
@article{MIC-2017-2-2,
  title={{Feasibility Study of Electromechanical Cylinder Drivetrain for Offshore Mechatronic Systems}},
  author={Hagen, Daniel and Pawlus, Witold and Ebbesen, Morten K. and Andersen, Torben Ole},
  journal={Modeling, Identification and Control},
  volume={38},
  number={2},
  pages={59--77},
  year={2017},
  doi={10.4173/mic.2017.2.2},
  publisher={Norwegian Society of Automatic Control}
};