“Energy Optimal Trajectories in Human Arm Motion Aiming for Assistive Robots”

Authors: Lelai Zhou, Shaoping Bai and Yibin Li,
Affiliation: Shandong University and Aalborg University
Reference: 2017, Vol 38, No 1, pp. 11-19.

Keywords: metabolic cost, human arm motion, energy consumption

Abstract: The energy expenditure in human arm has been of great interests for seeking optimal human arm trajectories. This paper presents a new way for calculating metabolic energy consumption of human arm motions. The purpose is to reveal the relationship between the energy consumption and the trajectory of arm motion, and further, the acceleration and arm orientation contributions. Human arm motion in horizontal plane is investigated by virtue of Qualisys motion capture system. The motion data is post-processed by a biomechanical model to obtain the metabolic expenditure. Results on the arm motion kinematics, dynamics and metabolic energy consumption, are included.

PDF PDF (510 Kb)        DOI: 10.4173/mic.2017.1.2

DOI forward links to this article:
[1] Umme Zakia and Carlo Menon (2020), doi:10.3390/s20072104
[2] TingTing Lin, Ronghua Li, Youqing Yang and Heng Li (2020), doi:10.1088/1742-6596/1550/3/032076
[3] Art ras Linkel (2018), doi:10.20334/2018-003-M
[4] Hu Jingchao and Haiying Zhang (2020), doi:10.3233/JIFS-189232
References:
[1] Abend, W., Bizzi, E., and Morasso, P. (1982). Abend, W, , Bizzi, E., and Morasso, P. Human arm trajectory formation. Brain. 105:331--348. doi:10.1093/brain/105.2.331
[2] Alexander, R.M. (1997). Alexander, R, M. A minimum energy cost hypothesis for human arm trajectories. Biological Cybernetics. 76(2):97--105. doi:10.1007/s004220050324
[3] Anglin, C. and Wyss, U.P. (2000). Anglin, C, and Wyss, U.P. Review of arm motion analyses. Proc. Inst. Mech. Eng. 214(5):541--555. doi:10.1243/0954411001535570
[4] Atkeson, C.G. and Hollerbach, J.M. (1985). Atkeson, C, G. and Hollerbach, J.M. Kinematic features of unrestrained vertical arm movements. Journal of Neuroscience. 5(9):2318--2330. .
[5] Buchanan, T.S. and Shreeve, D.A. (1996). Buchanan, T, S. and Shreeve, D.A. An evaluation of optimization techniques for the prediction of muscle activation patterns during isometric tasks. Journal of Biomechanical Engineering. 118:565--574. doi:10.1115/1.2796044
[6] Fagg, A.H., Shah, A., and Barto, A.G. (2002). Fagg, A, H., Shah, A., and Barto, A.G. A computational model of muscle recruitment for wrist movements. Journal of Neurophysiology. 88:3348--3358. doi:10.1152/jn.00621.2002
[7] Flash, T. and Hogan, N. (1985). Flash, T, and Hogan, N. The coordination of arm movements: An experimentally confirmed mathematical model. Journal of Neuroscience. 5(7):1688--1703. .
[8] Georgopoulos, A.P., Schwartz, A.B., and Kettner, R.E. (1986). Georgopoulos, A, P., Schwartz, A.B., and Kettner, R.E. Neuronal population coding of movement direction. Science. 233:1416--1419. doi:10.1126/science.3749885
[9] Kashima, T. and Isurugi, Y. (1998). Kashima, T, and Isurugi, Y. Trajectory formation based on physiological characteristics of skeletal muscles. Biological Cybernetics. 78:413--422. doi:10.1007/s004220050445
[10] Kashima, T., Isurugi, Y., and Shima, M. (2002). Kashima, T, , Isurugi, Y., and Shima, M. An optimal control model of a neuromuscular system in human arm movements and its contrl characteristics. Artificial Life Robotics. 6:205--209. doi:10.1007/BF02481269
[11] Kontaxis, A., Cutti, A., Johnson, G., and Veeger, H. (2009). Kontaxis, A, , Cutti, A., Johnson, G., and Veeger, H. A framework for the definition of standardized protocols for measuring upper-extremity kinematics. Clinical Biomechanics. 24:246--253. doi:10.1016/j.clinbiomech.2008.12.009
[12] Lan, N. (1997). Lan, N, Analysis of an optimal control model of multi-joint arm movements. Biological Cybernetics. 76:107--117. doi:10.1007/s004220050325
[13] Ma, S. and Zahalak, G.I. (1991). Ma, S, and Zahalak, G.I. A distribution-moment model of energetics in skeletal muscle. Journal of Biomechanics. 24(1):21--35. doi:10.1016/0021-9290(91)90323-F
[14] Morasso, P. (1981). Morasso, P, Spatial control of arm movements. Experimental Brain Research. 42:223--227. doi:10.1007/BF00236911
[15] QTM. (2008). QTM, Qualisys track manager user manual. 2008. .
[16] Rosenbaum, D.A., Loukopoulos, L.D., Meulenbroek, R. G.J., Vaughan, J., and Engelbrecht, S.E. (1995). Rosenbaum, D, A., Loukopoulos, L.D., Meulenbroek, R. G.J., Vaughan, J., and Engelbrecht, S.E. Planning reaches by evaluating stored postures. Psychological Review. 102(1):28--67. doi:10.1037/0033-295X.102.1.28
[17] Secco, E.L., Valandro, L., Caimmi, R., Magenes, G., and Salvato, B. (2005). Secco, E, L., Valandro, L., Caimmi, R., Magenes, G., and Salvato, B. Optimization of two-joint arm movements: a model technique or a result of natural selection? Biological Cybernetics. 93:288--306. doi:10.1007/s00422-005-0003-2
[18] Winter, D.A. (1990). Winter, D, A. Biomechanics and motor control of human movement. Wiley. .
[19] Winters, J.M. and Stark, L. (1985). Winters, J, M. and Stark, L. Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models. IEEE Transactions on Biomedical Engineering. 32:826--839. doi:10.1109/TBME.1985.325498
[20] Woledge, R.C., Curtin, N.A., and Homsher, E. (1985). Woledge, R, C., Curtin, N.A., and Homsher, E. Energetic aspect of muscle contraction. Monographs of the Physiological Society. 41:1--357. .
[21] Zhou, L., Bai, S., Hansen, M.R., and Rasmussen, J. (2011). Zhou, L, , Bai, S., Hansen, M.R., and Rasmussen, J. Modeling of human arm energy expenditure for predicting energy optimal trajectories. Modeling, Identification and Control. 31(3):91--101. doi:10.4173/mic.2011.3.1


BibTeX:
@article{MIC-2017-1-2,
  title={{Energy Optimal Trajectories in Human Arm Motion Aiming for Assistive Robots}},
  author={Zhou, Lelai and Bai, Shaoping and Li, Yibin},
  journal={Modeling, Identification and Control},
  volume={38},
  number={1},
  pages={11--19},
  year={2017},
  doi={10.4173/mic.2017.1.2},
  publisher={Norwegian Society of Automatic Control}
};