“A Decoupled Approach for Flight Control”

Authors: Espen Oland and Raymond Kristiansen,
Affiliation: The Arctic University of Norway
Reference: 2016, Vol 37, No 4, pp. 237-246.

Keywords: Decoupling, flight control, unmanned aerial vehicle, quaternions, nonlinear control

Abstract: A decoupling method for flight control is presented that greatly simplifies the controller design. By approximating the higher order derivatives of the angle of attack and sideslip, it enables a rotation controller and a speed controller to be derived independently of each other, and thus gives access to a vast number of controller solutions derived for general classes of rotational and translational systems. For rotational control, a quaternion-based sliding surface controller is derived to align the wind frame in a desired direction, and using standard Lyapunov methods an airspeed controller is derived to ensure that an unmanned aerial vehicle moves with a positive airspeed. Simulations validate the potential of the proposed method, where the unmanned aerial vehicle is able to obtain leveled flight and move in a desired direction with a desired airspeed.

PDF PDF (685 Kb)        DOI: 10.4173/mic.2016.4.4

DOI forward links to this article:
[1] Espen Oland (2018), doi:10.1109/ICMAE.2018.8467639
[2] Espen Oland, Raymond Kristiansen and Jan Tommy Gravdahl (2020), doi:10.1109/TCST.2018.2873507
References:
[1] Borhaug, E. and Pettersen, K.Y. (2005). Borhaug, E, and Pettersen, K.Y. Cross-track control for underactuated autonomous vehicles. In Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain. doi:10.1109/CDC.2005.1582222
[2] Campa, G., Gu, Y., Seanor, B., Napolitano, M.R., Pollini, L., and Fravolini, M.L. (2007). Campa, G, , Gu, Y., Seanor, B., Napolitano, M.R., Pollini, L., and Fravolini, M.L. Design and flight-testing of non-linear formation control laws. Control Engineering Practice. Vol. 15:pp. 1077--1092. doi:10.1016/j.conengprac.2007.01.004
[3] Egeland, O. and Gravdahl, J.T. (2002). Egeland, O, and Gravdahl, J.T. Modeling and simulation for automatic control. Marine Cybernetics, Trondheim, Norway, ISBN 82-92356-01-0. .
[4] Etkin, B. (1972). Etkin, B, Dynamics of atmospheric flight. Dover Publications, Inc., ISBN0-486-44522-4. .
[5] Farrell, J., Sharma, M., and Polycarpou, M. (2005). Farrell, J, , Sharma, M., and Polycarpou, M. Backstepping-based flight control with adaptive function approximation. Journal of Guidance, Control, and Dynamics. 28, no. 6:1089--1101. doi:10.2514/1.13030
[6] Fossen, T.I. (2011). Fossen, T, I. Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons Ltd., ISBN: 978-1-119-99149-6. .
[7] Fossen, T.I., Breivik, M., and Skjetne, R. (2003). Fossen, T, I., Breivik, M., and Skjetne, R. Line-of-sight path following of underactuated marine craft. In Proceedings of the 6th IFAC MCMC. Girona, Spain. www.fossen.biz/home/papers/FossenBreivikSkjetneMCMC03.pdf. .
[8] Hamilton, W.R. (1844). Hamilton, W, R. On quaternions: or a new system of imaginaries in algebra. Philosophical Magazine. Vol. 25:pp. 489--495. doi:10.1080/14786444608645590
[9] Khalil, H.K. (2002). Khalil, H, K. Nonlinear systems. 3rd ed., Prentice Hall, ISBN 0-13-067389-7. .
[10] Kristiansen, R., Loria, A., Chaillet, A., and Nicklasson, P.J. (2009). Kristiansen, R, , Loria, A., Chaillet, A., and Nicklasson, P.J. Spacecraft relative rotation tracking without angular velocity measurements. Automatica. Vol. 45, No. 3:pp. 750--756. doi:10.1016/j.automatica.2008.10.012
[11] Lee, T. and Kim, Y. (2001). Lee, T, and Kim, Y. Nonlinear adaptive flight control using backstepping and neural networks controller. Journal of Guidance, Control and Dynamics. Vol. 24, No. 4:pp. 675--682. doi:10.2514/2.4794
[12] Loria, A. and Panteley, E. (2002). Loria, A, and Panteley, E. Uniform exponential stability of linear time-varying systems: revisited. System & Control Letters. Vol. 47, No. 1:pp. 13--24. doi:10.1016/S0167-6911(02)00165-2
[13] Oland, E., Andersen, T.S., and Kristiansen, R. (2016). Oland, E, , Andersen, T.S., and Kristiansen, R. Subsumption architecture applied to flight control using composite rotations. Automatica. Vol. 69:pp. 195--200. doi:10.1016/j.automatica.2016.02.034
[14] Oland, E. and Kristiansen, R. (2014). Oland, E, and Kristiansen, R. Trajectory tracking of an underactuated fixed-wing UAV. In Proceedings of the ICNPAA Congress on Mathematical problems in engineering, aerospace and sciences. Narvik, Norway. doi:10.1063/1.4907300
[15] Oland, E., Schlanbusch, R., and Kristiansen, R. (2013). Oland, E, , Schlanbusch, R., and Kristiansen, R. Underactuated waypoint tracking of a fixed-wing UAV. In Proceedings of the 2nd RED-UAS. Compiegne, France. doi:10.3182/20131120-3-FR-4045.00007
[16] Reyhanoglu, M., vander Schaft, A., McClamroch, N.H., and Kolmanovsky, I. (1999). Reyhanoglu, M, , vander Schaft, A., McClamroch, N.H., and Kolmanovsky, I. Dynamics and control of a class of underactuated mechanical systems. IEEE Transactions on Automatic Control. Vol. 44, No. 9:pp. 1663--1671. doi:10.1109/9.788533
[17] Schlanbusch, R., Grotli, E., Loria, A., and Nicklasson, P.J. (2011). Schlanbusch, R, , Grotli, E., Loria, A., and Nicklasson, P.J. Hybrid attitude tracking of output feedback controlled rigid bodies. In Proceedings of the 50th IEEE Conference on Decision and Control. Orlando, FL, USA. doi:10.1109/CDC.2011.6161517
[18] Schlanbusch, R., Loria, A., and Nicklasson, P.J. (2012). Schlanbusch, R, , Loria, A., and Nicklasson, P.J. On the stability and stabilization of quaternion equilibria of rigid bodies. Automatica. Vol. 48, No. 12:pp. 3135--3141. doi:10.1016/j.automatica.2012.08.012
[19] Slotine, J. J.E. and Li, W. (1987). Slotine, J, J.E. and Li, W. On the adaptive control of robot manipulators. International Journal of Robotics Research. Vol. 6, No. 3:pp. 49--59. doi:10.1177/027836498700600303
[20] Sonneveldt, L., van Oort, E.R., Chu, Q.P., and Mulder, J.A. (2009). Sonneveldt, L, , van Oort, E.R., Chu, Q.P., and Mulder, J.A. Nonlinear adaptive trajectory control applied to an F-16 model. Journal of Guidance, Control and Dynamics. Vol. 32, No. 1:pp. 25--39. doi:10.2514/1.38785
[21] Stengel, R.F. (2004). Stengel, R, F. Flight dynamics. Princeton University Press, ISBN 0-691-11407-2. .
[22] Stevens, B.L. and Lewis, F.L. (2003). Stevens, B, L. and Lewis, F.L. Aircraft control and simulation. 2nd ed., Wiley, ISBN 978-0-471-37145-8. .
[23] Tayebi, A. and McGilvray, S. (2006). Tayebi, A, and McGilvray, S. Attitude stabilization of a VTOL quadrotor aircraft. IEEE Transaction on Control Systems Technology. Vol. 14, No. 3:pp. 562--571. doi:10.1109/TCST.2006.872519


BibTeX:
@article{MIC-2016-4-4,
  title={{A Decoupled Approach for Flight Control}},
  author={Oland, Espen and Kristiansen, Raymond},
  journal={Modeling, Identification and Control},
  volume={37},
  number={4},
  pages={237--246},
  year={2016},
  doi={10.4173/mic.2016.4.4},
  publisher={Norwegian Society of Automatic Control}
};