“Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid”

Authors: Anders Lyngvi Fougner, Konstanze Kölle, Nils Kristian Skjærvold, Nicolas-Andreas L. Elvemo, Dag Roar Hjelme, Reinold Ellingsen, Sven Magnus Carlsen and Øyvind Stavdahl,
Affiliation: NTNU, Department of Engineering Cybernetics, Central Norway Regional Health Authority, NTNU, St Olavs Hospital, Trondheim, Norway and GlucoSet AS, Norway
Reference: 2016, Vol 37, No 2, pp. 121-131.

Keywords: Diabetes, Artificial Pancreas, Closed-loop systems, Type 1 diabetes, Type 2 diabetes

Abstract: This article presents a trajectory planning method for autonomous surface vessels that is compliant with Rule 8 and rules 13-17 from the Convention on the International Regulations for Preventing Collisions at Sea (COLREGs). The method is suitable for operation in restricted waters, where it both handles collision avoidance with static obstacles, and also considers the available room to maneuver when determining the appropriate safe distance to other vessels. The trajectory planner is formulated as a finite-horizon nonlinear model predictive controller, minimizing the deviation from a reference trajectory and the acceleration. Collision avoidance with static obstacles is included through the use of convex free sets. Collision avoidance with other traffic is done by assigning so-called target ship domains to each vessel, and formulating constraints for that domain. COLREGs rules 13-15 and 17 are included by first classifying each vessel-to-vessel encounter to find which rule applies, and subsequently assigning an encounter-specific domain to the opposing vessel. The domain is designed so that if the trajectory does not violate the domain, compliance with COLREGs rules 13-15 and partial compliance with Rule 17 is ensured. Furthermore, compliance with COLREGs Rule 8 and Rule 16 is included through a novel method for calculating the objective function cost-gains. By constructing windows of reduced tracking error and acceleration cost, the start time, duration and magnitude of a maneuver can be controlled, and hence readily apparent maneuvers made in ample time can be facilitated. The method's effectiveness and its completeness in terms of COLREGs compliance is demonstrated through an extensive set of simulations of vessel-to-vessel encounters in open waters. Furthermore, the robustness of the method is demonstrated through a set of complex simulations in confined areas with several maneuvering vessels. In all simulations, the method demonstrates compliance with COLREGs Rule 8 and rules 13-17.

PDF PDF (1870 Kb)        DOI: 10.4173/mic.2016.2.4

DOI forward links to this article:
[1] Konstanze Kölle, Anders Fougner and Øyvind Stavdahl (2017), doi:10.1016/j.ifacol.2017.08.1154
[2] Karolina Milenko, Silje S. Fuglerud, Ine L. Jernelv, Astrid Aksnes, Reinold Ellingsen and Dag Roar Hjelme (2018), doi:10.1364/BGPPM.2018.JTu2A.70
[3] Ine L. Jernelv, Karolina Milenko, Silje S. Fuglerud, Dag Roar Hjelme, Reinold Ellingsen and Astrid Aksnes (2018), doi:10.1080/05704928.2018.1486324
[4] Ankush Chakrabarty, Justin M. Gregory, L. Merkle Moore, Philip E. Williams, Ben Farmer, Alan D. Cherrington, Peter Lord, Brian Shelton, Don Cohen, Howard C. Zisser, Francis J. Doyle and Eyal Dassau (2019), doi:10.1016/j.jprocont.2019.01.002
[5] Silje S. Fuglerud, Karolina B. Milenko, Reinold Ellingsen, Astrid Aksnes and Dag R. Hjelme (2019), doi:10.1364/AO.58.002456
[6] Marte Kierulf Åm, Anders Lyngvi Fougner, Reinold Ellingsen, Dag Roar Hjelme, Patrick Christian Bösch, Øyvind Stavdahl, Sven Magnus Carlsen and Sverre Christian Christiansen (2019), doi:10.1016/j.mehy.2019.109318
[7] Kee Scholten and Ellis Meng (2018), doi:10.1016/j.ijpharm.2018.02.022
[8] Marte Kierulf Am, Konstanze Kolle, Anders Lyngvi Fougner, Ilze Dirnena-Fusini, Patrick Christian Bosch, Reinold Ellingsen, Dag Roar Hjelme, Oyvind Stavdahl, Sven Magnus Carlsen, Sverre Christian Chris (2018), doi:10.1371/journal.pone.0205447
[9] Ine L. Jernelv, Dag Roar Hjelme and Astrid Aksnes (2020), doi:10.1364/BOE.393617
[10] Silje Skeide Fuglerud, Reinold Ellingsen, Astrid Aksnes and Dag Roar Hjelme (2021), doi:10.1002/jbio.202000450
[11] Claudia Lopez-Zazueta, Oyvind Stavdahl and Anders Lyngvi Fougner (2022), doi:10.1109/TBME.2021.3125839
References:
[1] Bailey, T.S., Chang, A., and Christiansen, M. (2015). Bailey, T, S., Chang, A., and Christiansen, M. Clinical accuracy of a continuous glucose monitoring system with an advanced algorithm. Journal of Diabetes Science and Technology. 9(2):209--214. doi:10.1177/1932296814559746
[2] Basu, A., Dube, S., Slama, M., Errazuriz, I., Amezcua, J.C., Kudva, Y.C., Peyser, T., Carter, R.E., Cobelli, C., and Basu, R. (2013). Basu, A, , Dube, S., Slama, M., Errazuriz, I., Amezcua, J.C., Kudva, Y.C., Peyser, T., Carter, R.E., Cobelli, C., and Basu, R. Time lag of glucose from intravascular to interstitial compartment in humans. Diabetes. 62(12):4083--4087. doi:10.2337/db13-1132
[3] Boyne, M.S., Silver, D.M., Kaplan, J., and Saudek, C.D. (2003). Boyne, M, S., Silver, D.M., Kaplan, J., and Saudek, C.D. Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor. Diabetes. 52(11):2790--2794. doi:10.2337/diabetes.52.11.2790
[4] Burnett, D., Huyett, L., and Zisser, H. (2014). Burnett, D, , Huyett, L., and Zisser, H. Glucose sensing in the peritoneal space offers faster kinetics than sensing in the subcutaneous space. Diabetes. 63(7):2498--2505. doi:10.2337/db13-1649
[5] Cengiz, E. and Tamborlane, W.V. (2009). Cengiz, E, and Tamborlane, W.V. A tale of two compartments: Interstitial versus blood glucose monitoring. Diabetes Technology & Therapeutics. 11(s1). doi:10.1089/dia.2009.0002
[6] Clark, L.C., Noyes, L.K., Spokane, R.B., Sudan, R., and Miller, M.L. (1988). Clark, L, C., Noyes, L.K., Spokane, R.B., Sudan, R., and Miller, M.L. Long-term implantation of voltammetric oxidase-peroxide glucose sensors in the rat peritoneum. Methods in Enzymology. doi:10.1016/0076-6879(88)37008-4
[7] Clark, L.C., Spokane, R.B., Sudan, R., and Stroup, T.L. (1987). Clark, L, C., Spokane, R.B., Sudan, R., and Stroup, T.L. Long-lived implanted silastic drum glucose sensors. Transactions - American Society for Artificial Internal Organs. 33. .
[8] Davey, R.J., Low, C., Jones, T.W., and Fournier, P.A. (2010). Davey, R, J., Low, C., Jones, T.W., and Fournier, P.A. Contribution of an intrinsic lag of continuous glucose monitoring systems to differences in measured and actual glucose concentrations changing at variable rates in vitro. Journal of Diabetes Science and Technology. 4(6):1393--1399. doi:10.1177/193229681000400614
[9] Garcia, A., Rack-Gomer, A.L., Bhavaraju, N.C., Hampapuram, H., Kamath, A., Peyser, T., Facchinetti, A., Zecchin, C., Sparacino, G., and Cobelli, C. (2013). Garcia, A, , Rack-Gomer, A.L., Bhavaraju, N.C., Hampapuram, H., Kamath, A., Peyser, T., Facchinetti, A., Zecchin, C., Sparacino, G., and Cobelli, C. Dexcom g4ap: an advanced continuous glucose monitor for the artificial pancreas. Journal of Diabetes Science and Technology. 7(6):1436--1445. doi:10.1177/193229681300700604
[10] Helton, K.L., Ratner, B.D., and Wisniewski, N.A. (2011). Helton, K, L., Ratner, B.D., and Wisniewski, N.A. Biomechanics of the sensor-tissue interface—effects of motion, pressure, and design on sensor performance and foreign body response—part ii: Examples and application. Journal of Diabetes Science and Technology. 5(3):647--656. doi:10.1177/193229681100500318
[11] Mensh, B.D., Wisniewski, N.A., Neil, B.M., and Burnett, D.R. (2013). Mensh, B, D., Wisniewski, N.A., Neil, B.M., and Burnett, D.R. Susceptibility of interstitial continuous glucose monitor performance to sleeping position. Journal of Diabetes Science and Technology. 7(4):863--870. doi:10.1177/193229681300700408
[12] Patel, R. and Planche, K. (2013). Patel, R, and Planche, K. Applied Peritoneal Anatomy. Clinical Radiology. 68(5):509--520. .
[13] Skjaervold, N.K., Lyng, O., Spigset, O., and Aadahl, P. (2012). Skjaervold, N, K., Lyng, O., Spigset, O., and Aadahl, P. Pharmacology of intravenous insulin administration: Implications for future closed-loop glycemic control by the intravenous/intravenous route. Diabetes Technology & Therapeutics. 14(1):23--29. doi:10.1089/dia.2011.0118
[14] Skjaervold, N.K., Ostling, D., Hjelme, D.R., Spigset, O., Lyng, O., and Aadahl, P. (2013). Skjaervold, N, K., Ostling, D., Hjelme, D.R., Spigset, O., Lyng, O., and Aadahl, P. Blood glucose control using a novel continuous blood glucose monitor and repetitive intravenous insulin boluses: Exploiting natural insulin pulsatility as a principle for a future artificial pancreas. International Journal of Endocrinology. 245152:1--8. doi:10.1155/2013/245152
[15] Stout, P.J., Racchini, J.R., and Hilgers, M.E. (2004). Stout, P, J., Racchini, J.R., and Hilgers, M.E. A novel approach to mitigating the physiological lag between blood and interstitial fluid glucose measurements. Diabetes Technology & Therapeutics. 6(5):635--644. doi:10.1089/dia.2004.6.635
[16] Tierney, S., Falch, B. M.H., Hjelme, D.R., and Stokke, B.T. (2009). Tierney, S, , Falch, B. M.H., Hjelme, D.R., and Stokke, B.T. Determination of glucose levels using a functionalized hydrogel-optical fiber biosensor: Toward continuous monitoring of blood glucose in vivo. Analytical Chemistry. 81(9):3630--3636. doi:10.1021/ac900019k
[17] Velho, G., Froguel, P., and Reach, G. (1989). Velho, G, , Froguel, P., and Reach, G. Determination of peritoneal glucose kinetics in rats, implications for the peritoneal implantation of closed-loop insulin delivery systems. Diabetologia. 32. .


BibTeX:
@article{MIC-2016-2-4,
  title={{Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid}},
  author={Fougner, Anders Lyngvi and Kölle, Konstanze and Skjærvold, Nils Kristian and Elvemo, Nicolas-Andreas L. and Hjelme, Dag Roar and Ellingsen, Reinold and Carlsen, Sven Magnus and Stavdahl, Øyvind},
  journal={Modeling, Identification and Control},
  volume={37},
  number={2},
  pages={121--131},
  year={2016},
  doi={10.4173/mic.2016.2.4},
  publisher={Norwegian Society of Automatic Control}
};