“Rapid High-Frequency Measurements of Electrical Circuits by Using Frequency Mixer and Pseudo-Random Sequences”

Authors: T. Roinila, R. Luhtala, T. Salpavaara, J. Verho, T. Messo and M. Vilkko,
Affiliation: Tampere University of Technology
Reference: 2016, Vol 37, No 2, pp. 113-119.

Keywords: Identification, Frequency measurements, Modeling, Excitation design

Abstract: Frequency-response measurements at high frequencies have been shown to provide a valuable design tool in various fields of electronics. These measurements are often challenging when using most commercially available measurement tools due to their relatively low maximum sampling frequency and long measurement time. This effectively prevents frequency-response-based low-cost applications where fast and reliable measurements are required. This paper proposes the use of a combined frequency mixer applied with pseudo-random sequences. In this method, the applied pseudo-random excitation is upconverted to high frequencies by the mixer, and once injected into the device being tested, the system response is downconverted to lower frequencies. The method provides a low-cost solution that can be applied for rapid high-frequency measurements by using only modest data-acquisition tools. Experimental results based on a high-frequency resonator are presented and used to demonstrate the effectiveness of the proposed methods.

PDF PDF (464 Kb)        DOI: 10.4173/mic.2016.2.3

DOI forward links to this article:
[1] Cong Wang, Zhen Li, Zhongli Pan and Daoliang Li (2018), doi:10.1016/j.compag.2018.05.011
[2] Roni Luhtala, Tomi Roinila and Tuomas Messo (2018), doi:10.1109/TIA.2018.2826998
[3] Xijin Song, Xuelong Wang, Zhao Dong, Xiaojiao Zhao and Xudong Feng (2018), doi:10.3390/en11102586
[4] Xijin Song, Xuelong Wang and Peng Li (2020), doi:10.1007/978-981-13-7127-1_160
References:
[1] Chen, P.-J., Saati, S., Varma, R., Humayun, M., and Tai, Y.-C. (2010). Chen, P, -J., Saati, S., Varma, R., Humayun, M., and Tai, Y.-C. Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant. Journal of Microelectromechanical Systems. 19(4):721--734. doi:10.1109/JMEMS.2010.2049825
[2] Godfrey, K.R. (1991). Godfrey, K, R. Introduction to binary signals used in system identification. In Proc. International Conference on Control. pages 161--166, 1991. .
[3] Golomb, S. (1967). Golomb, S, Shift Register Sequences. San Francisco, Holden-Day. .
[4] Horton, B., Schweitzer, S., DeRouin, A., and Ong, K. (2011). Horton, B, , Schweitzer, S., DeRouin, A., and Ong, K. A varactor-based, inductively coupled wireless ph sensor. IEEE Sensors Journal. 11:1061--1066. doi:10.1109/JSEN.2010.2062503
[5] Khan-ngern, W. and Zenkner, H. (2014). Khan-ngern, W, and Zenkner, H. Wireless power charging on electric vehicles. In Proc. of the International Electrical Engineering Congress. pages 1--4. doi:10.1109/ieecon.2014.6925964
[6] Ling, W., Sotiriadis, P., and Adams, R. (2009). Ling, W, , Sotiriadis, P., and Adams, R. Mixed signal frequency mixers with intermodulation product cancellation. IEEE International Symposium on Circuits and Systems. pages 2105--2108. doi:10.1109/ISCAS.2009.5118210
[7] Ljung, L. (1999). Ljung, L, System Identification-Theory for the User. Prentice Hall PTR, USA. .
[8] Mannoor, M., Tao, H., Clayton, J., Sengupta, A., Kaplan, D., Naik, R., Verma, N., Omenetto, F., and McAlpine, M. (2012). Mannoor, M, , Tao, H., Clayton, J., Sengupta, A., Kaplan, D., Naik, R., Verma, N., Omenetto, F., and McAlpine, M. Graphene-based wireless bacteria detection on tooth enamel. Nature Communications. 3:1--8. doi:10.1038/ncomms1767
[9] Martin, D., Nam, I., Siegers, J., and Santi, E. (2013). Martin, D, , Nam, I., Siegers, J., and Santi, E. Wide bandwidth three-phase impedance identification using existing power electronics inverter. In Proc. The Applied Power Electronics Conference and Exposition. pages 334--341. doi:10.1109/apec.2013.6520230
[10] Meisser, M., Hähre, K., and Kling, R. (2012). Meisser, M, , Hähre, K., and Kling, R. Impedance characterization of high frequency power electronic circuits. In International Conference on Power Electronics, Machines and Drives. pages 1--6. doi:10.1049/cp.2012.0240
[11] Paavle, T., Min, M., and Parve, T. (2008). Paavle, T, , Min, M., and Parve, T. Using of chirp excitation for bioimpedance estimation: Theoretical aspects and modeling. In Proc. 11th International Biennial Baltic Electronics Conference. pages 325--328. doi:10.1109/bec.2008.4657546
[12] Pintelon, R. and Schoukens, J. (2001). Pintelon, R, and Schoukens, J. System Identification - A Frequency Domain Approach. The Institute of Electrical and Electronics Engineers, Inc. New York, 2001. doi:10.1002/0471723134
[13] Potyrailo, R. and Surman, C. (2013). Potyrailo, R, and Surman, C. A passive radio-frequency identification (RFID) gas sensor with self-correction against fluctuations of ambient temperature. Sensors and Actuators B: Chemical. 185:587--593. doi:10.1016/j.snb.2013.04.107
[14] Riistama, J., Aittokallio, E., Verho, J., and Lekkala, J. (2010). Riistama, J, , Aittokallio, E., Verho, J., and Lekkala, J. Totally passive wireless biopotential measurement sensor by utilizing inductively coupled resonance circuits. Sensors and Actuators A: Physical. 157(2):313--321. doi:10.1016/j.sna.2009.11.038
[15] Roinila, T., Vilkko, M., and Sun, J. (2014). Roinila, T, , Vilkko, M., and Sun, J. Online grid impedance measurement using discrete-interval binary sequence injection. IEEE Journal of Emerging and Selected Topics in Power Electronics. 2:985--993. doi:10.1109/JESTPE.2014.2357494
[16] Roinila, T., Yu, X., Gao, A., Li, T., Verho, J., Vilkko, M., Kallio, P., Wangy, Y., and Lekkala, J. (2012). Roinila, T, , Yu, X., Gao, A., Li, T., Verho, J., Vilkko, M., Kallio, P., Wangy, Y., and Lekkala, J. Characterizing leakage current in silicon nanowire-based field-effect transistors by applying pseudo-random sequences. In Proc. International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale. 2012. doi:10.1109/3m-nano.2012.6472995
[17] Salpavaara, T., Verho, J., Kumpulainen, P., and Lekkala, J. (2011). Salpavaara, T, , Verho, J., Kumpulainen, P., and Lekkala, J. Readout methods for an inductively coupled resonance sensor used in pressure garment application. Sensors and Actuators A: Physical. 172(1):109--116. doi:10.1016/j.sna.2011.02.051
[18] Schaefer, W. (1999). Schaefer, W, Understanding impulse bandwidth specifications of EMI receivers. In Proc. IEEE International Symposium on Electromagnetic Compatibility. pages 958--961. doi:10.1109/isemc.1999.810195
[19] Suntio, T. (2009). Suntio, T, Dynamic Profile of Switched-Mode Converter. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim. doi:10.1002/9783527626014


BibTeX:
@article{MIC-2016-2-3,
  title={{Rapid High-Frequency Measurements of Electrical Circuits by Using Frequency Mixer and Pseudo-Random Sequences}},
  author={Roinila, T. and Luhtala, R. and Salpavaara, T. and Verho, J. and Messo, T. and Vilkko, M.},
  journal={Modeling, Identification and Control},
  volume={37},
  number={2},
  pages={113--119},
  year={2016},
  doi={10.4173/mic.2016.2.3},
  publisher={Norwegian Society of Automatic Control}
};