“Modeling and Simulation of Multi-Room Buildings”

Authors: D.W.U. Perera and Nils-Olav Skeie,
Affiliation: University of South-Eastern Norway
Reference: 2016, Vol 37, No 2, pp. 99-111.

Keywords: Multi-floor, Multi-room, Physical models, Single-zone

Abstract: Buildings are one of the largest energy consumers in the world which accounts for nearly 40% of the total global energy consumption. In the countries where cold climate conditions predominate, space heating is the key contributor to the increased energy consumption. Today there is a growing trend to use Building Energy Management Systems (BEMS) to control the energy consumption of buildings in an efficient manner. BEMS require a good heating model of the building to be integrated for better control purposes. This article refers to the development of different types of physics based buillding heating models, regarding single-zone, multi-floor and multi-room buildings. They address the propriety of each model in building heating control concerning the prediction accuracy and the prediction time. These models are verified for a residential building having three floors. According to the results, the multi-floor model is recognized to have the best qualifications obliged as a model for control.

PDF PDF (637 Kb)        DOI: 10.4173/mic.2016.2.2

References:
[1] Allard, F., Bienfait, D., Haghighat, F., Liebecq, G., Mass, K., Pelletret, R., Vandaele, L., and Walker, R. (1992). Allard, F, , Bienfait, D., Haghighat, F., Liebecq, G., Mass, K., Pelletret, R., Vandaele, L., and Walker, R. Air flow through large openings in buildings. Technical report, International Energy Agency. .
[2] Allard, F. and Utsumi, Y. (1992). Allard, F, and Utsumi, Y. Airflow through large openings. Energy and Buildings. 18(2):133 -- 145. doi:10.1016/0378-7788(92)90042-F
[3] Brown, W. and Solvason, K. (1962). Brown, W, and Solvason, K. Natural convection through rectangular openings in partitions—1. International Journal of Heat and Mass Transfer. 5(9):859 -- 868. doi:10.1016/0017-9310(62)90184-9
[4] Desta, T.Z., Brecht, A.V., Quanten, S., Buggenhout, S.V., Meyers, J., Baelmans, M., and Berckmans, D. (2005). Desta, T, Z., Brecht, A.V., Quanten, S., Buggenhout, S.V., Meyers, J., Baelmans, M., and Berckmans, D. Modelling and control of heat transfer phenomena inside a ventilated air space. Energy and Buildings. 37(7):777 -- 786. doi:10.1016/j.enbuild.2004.10.006
[5] EBPD. (2010). EBPD, On the energy performance of buildings. Official Journal of European Union, Directive 2010/31/EU of the European Parliament and of the council. pages 13--34. .
[6] EU. (2013). EU, Energy efficiency trends in the eu. Technical report, European Commission. .
[7] Foucquier, A., Robert, S., Suard, F., Stéphan, L., and Jay, A. (2013). Foucquier, A, , Robert, S., Suard, F., Stéphan, L., and Jay, A. State of the art in building modelling and energy performances prediction: A review. Renewable and Sustainable Energy Reviews. 23:272 -- 288. doi:10.1016/j.rser.2013.03.004
[8] IEA. (2011). IEA, Energy policies for iea countries, norway. Technical report, IEA. .
[9] Khoury, Z.A., Riederer, P., Couillaud, N., Simon, J., and Raguin, M. (2005). Khoury, Z, A., Riederer, P., Couillaud, N., Simon, J., and Raguin, M. A multizone building model for matlab/simulink environment. In Ninth International IBPSA Conference2005: Montreal, Canada. 2005. .
[10] Kramer, R., van Schijndel, J., and Schellen, H. (2012). Kramer, R, , van Schijndel, J., and Schellen, H. Simplified thermal and hygric building models: A literature review. Frontiers of Architectural Research. 1(4):318 -- 325. doi:10.1016/j.foar.2012.09.001
[11] Kusuda, T. (1977). Kusuda, T, Fundamentals of building heat transfer. Journal of Research of the National Bureau of Standards. 82(2):97--106. .
[12] Lin, Y., Middelkoop, T., and Barooah, P. (2012). Lin, Y, , Middelkoop, T., and Barooah, P. Issues in identification of control-oriented thermal models of zones in multi-zone buildings. In Decision and Control (CDC), 2012 IEEE 51st Annual Conference on. pages 6932--6937. doi:10.1109/CDC.2012.6425958
[13] Lu, X., Clements-Croome, D., and Viljanen, M. (2009). Lu, X, , Clements-Croome, D., and Viljanen, M. Past, present and future mathematical models for buildings. Intelligent Buildings International. 1(2):131--141. doi:10.3763/inbi.2009.0024
[14] Lu, X., Lu, T., Kibert, C.J., and Viljanen, M. (2014). Lu, X, , Lu, T., Kibert, C.J., and Viljanen, M. A novel dynamic modeling approach for predicting building energy performance. Applied Energy. 114:91 -- 103. doi:10.1016/j.apenergy.2013.08.093
[15] Mendes, N., Oliveira, G. H.C., Araújo, H.X., and Coelho, L.S. (2003). Mendes, N, , Oliveira, G. H.C., Araújo, H.X., and Coelho, L.S. A matlab based simulation tool for building thermal performance analysis. In Eighth International IBPSA Conference. 2003. Eindhoven, Netherlands. 2003. .
[16] Paulou, J., Lonsdale, J., Jamieson, M., Neuweg, I., Trucco, P., Maio, P., Blom, M., and Warringa, G. (2014). Paulou, J, , Lonsdale, J., Jamieson, M., Neuweg, I., Trucco, P., Maio, P., Blom, M., and Warringa, G. Financing the energy renovation of buildings with cohesion policy funding. Technical report, European Commission. .
[17] Peppes, A., Santamouris, M., and Asimakopoulos, D. (2002). Peppes, A, , Santamouris, M., and Asimakopoulos, D. Experimental and numerical study of buoyancy-driven stairwell flow in a three storey building. Building and Environment. 37(5):497 -- 506. doi:10.1016/S0360-1323(01)00060-9
[18] Perera, D. W.U., Pfeiffer, C., and Skeie, N.-O. (2014). Perera, D, W.U., Pfeiffer, C., and Skeie, N.-O. Modelling the heat dynamics of a residential building unit: Application to norwegian buildings. Modeling, Identification and Control, 2014. 35(1):43--57. doi:10.4173/mic.2014.1.4
[19] Perera, W., Pfeiffer, C.F., and Skeie, N.-O. (2014). Perera, W, , Pfeiffer, C.F., and Skeie, N.-O. Modeling and simulation of multi-zone buildings for better control. In 55th Conference on Simulation and Modelling, Aalborg, Denmark: Linköping University Electronic Press. 2014. .
[20] Riffat, S. (1991). Riffat, S, Algorithms for airflows through large internal and external openings. Applied Energy. 40(3):171 -- 188. doi:10.1016/0306-2619(91)90056-4
[21] Rosa, M.D., Bianco, V., Scarpa, F., and Tagliafico, L.A. (2014). Rosa, M, D., Bianco, V., Scarpa, F., and Tagliafico, L.A. Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach. Applied Energy. 128:217 -- 229. doi:10.1016/j.apenergy.2014.04.067
[22] Spindler, H.C. and Norford, L.K. (2009). Spindler, H, C. and Norford, L.K. Naturally ventilated and mixed-mode buildings—part i: Thermal modeling. Building and Environment. 44(4):736 -- 749. doi:10.1016/j.buildenv.2008.05.019
[23] Virk, G., Cheung, J., and Loveday, D. (1991). Virk, G, , Cheung, J., and Loveday, D. The development of adaptive control techniques for bems. In Control 1991. Control '91., International Conference on. pages 329--334 vol.1. .
[24] Yao, Y., Yang, K., Huang, M., and Wang, L. (2013). Yao, Y, , Yang, K., Huang, M., and Wang, L. A state-space model for dynamic response of indoor air temperature and humidity. Building and Environment. 64:26 -- 37. doi:10.1016/j.buildenv.2013.03.009
[25] Zhao, H. and Magoulès, F. (2012). Zhao, H, and Magoulès, F. A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews. 16(6):3586 -- 3592. doi:10.1016/j.rser.2012.02.049


BibTeX:
@article{MIC-2016-2-2,
  title={{Modeling and Simulation of Multi-Room Buildings}},
  author={Perera, D.W.U. and Skeie, Nils-Olav},
  journal={Modeling, Identification and Control},
  volume={37},
  number={2},
  pages={99--111},
  year={2016},
  doi={10.4173/mic.2016.2.2},
  publisher={Norwegian Society of Automatic Control}
};