“Dynamic and kinematic observers for output coordination control of Euler-Lagrange systems: A comparison and applications”

Authors: Erik Kyrkjebø,
Affiliation: Sogn and Fjordane University College
Reference: 2015, Vol 36, No 2, pp. 103-118.

Keywords: Observer, Synchronization, Coordination, Control, Surface ship, Robot

Abstract: This paper compares a dynamic and a kinematic observer approach for output coordination control of mechanical systems formulated in the Euler-Lagrange framework. The observers are designed to estimate missing velocity and acceleration information based on position/attitude measurements to provide a full state vector to the coordination control algorithm. The kinematic observer approach utilizes a virtual system designed to mimic the kinematic behaviour of the leader in order to estimate unknown states of the state vector with a minimum of information available. The dynamic observer approach is based on utilizing the full dynamic model of the follower system when estimating the missing states. The two observers are compared in terms of estimation principles and practical performance, and applied to two practical examples; leader-follower robot manipulator synchronization control, and underway replenishment operations for surface ships.

PDF PDF (770 Kb)        DOI: 10.4173/mic.2015.2.3

DOI forward links to this article:
[1] Jukka Parkkinen, Niko Nevaranta, Markku Niemela, Tuomo Lindh and Juha Pyrhonen (2018), doi:10.1109/EPEPEMC.2018.8521994
[2] Wentao Wu, Zhouhua Peng, Dan Wang, Lu Liu and Nan Gu (2022), doi:10.1016/j.oceaneng.2022.110686
[1] Al-Hiddabi, S.A. and McClamroch, N.H. (2002). Tracking and maneuver regulation control for nonlinear nonminimum phase systems: Application to flight control, IEEE Trans. on Control Systems Technology. 10(6):780 -- 792. doi:10.1109/TCST.2002.804120
[2] Bondhus, A.K., Pettersen, K.Y., and Nijmeijer, H. (2004). Master-slave synchronization of robot manipulators, In Proc. 6th IFAC Symp. on Nonlinear Control Systems. Stuttgart, Germany, pages 591 -- 596.
[3] Chaillet, A. (2006). Staiblite et Robustesse des Cascades Non-lineaires et Application aux Systemes Mecaniques, Ph.D. thesis, L'Universite Paris XI Orsay, Supelec, France, 2006.
[4] Chiaverini, S., Siciliano, B., and Egeland, O. (1994). Review of the damped least-squares inverse kinematics with experiments on an industrial robot manipulator, Control Systems Technology, IEEE Transactions on. 2(2):123--134. doi:10.1109/87.294335
[5] Choi, K., Yoo, S., Park, J., and Choi, Y. (2010). Adaptive formation control in absence of leader's velocity information, Control Theory Applications, IET. 4(4):521--528. doi:10.1049/iet-cta.2009.0074
[6] Crowley, J. (1989). Asynchronous control of orientation and displacement in a robot vehicle, In Proc. 1989 IEEE Int. Conf. on Robotics and Automation. Scottsdale, AZ, USA, pages 1277 -- 1282. doi:10.1109/ROBOT.1989.100156
[7] Encarnacao, P. and Pascoal, A. (2001). Combined trajectory tracking and path following: An application to the coordinated control of autonomous marine craft, In Proc. 40th IEEE Conf. on Decision and Control. Orlando, FL, USA, pages 964 -- 969. doi:10.1109/cdc.2001.980234
[8] Fossen, T.I. (2002). Marine Control Systems: Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles, Marine Cybernetics, Trondheim, Norway.
[9] Fradkov, A., Gusev, S., and Makarov, I. (1991). Robust speed-gradient adaptive control algorithms for manipulators and mobile robots, In Proc. 30th IEEE Conf. on Decision and Control. Brighton, England, pages 3095 -- 3096. doi:10.1109/CDC.1991.261122
[10] Goldstein, H., Poole, C., and Safko, J. (2002). Classical Mechanics, Pearson Education, Addison Wesley, 3rd edition.
[11] Gusev, S., Makarov, I., Paromtchik, I., Yakubovich, V., and Laugier, C. (1998). Adaptive motion control of a noholonomic vehicle, In Proc. 1998 IEEE Int. Conf. on Robotics and Automation. pages 3285 -- 3290. doi:10.1109/ROBOT.1998.680945
[12] Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation, IEEE Journal of Robotics and Automation. RA-3(1):43 -- 53. doi:10.1109/JRA.1987.1087068
[13] Kyrkjebo, E. (2007). Motion Coordination of Mechanical Systems: Leader-Follower Synchronization of Euler-Lagrange Systems using Output Feedback Control, Ph.D. thesis, Norwegian University of Science and Technology, Dep. of Engineering Cybernetics, Trondheim, Norway.
[14] Kyrkjebo, E., Panteley, E., Chaillet, A., and Pettersen, K.Y. (2006). Group Coordination and Cooperative Control, volume 336 of Lecture Notes in Control and Information Systems, chapter A Virtual Vehicle Approach to Underway Replenishment, pages 171 -- 189, Springer Verlag, Tromso, Norway, 2006. doi:10.1007/11505532_10
[15] Kyrkjebo, E. and Pettersen, K.Y. (2005). Output synchronization control of Euler-Lagrange systems with nonlinear damping terms, In Proc. 44th IEEE Conf. on Decision and Control and European Control Conf. Sevilla, Spain, pages 4951 -- 4957. doi:10.1109/cdc.2005.1582946
[16] Kyrkjebo, E. and Pettersen, K.Y. (2006). A virtual vehicle approach to output synchronization control, In Proc. 45th Conf. on Decision and Control. San Diego, USA. doi:10.1109/CDC.2006.377082
[17] Kyrkjebo, E. and Pettersen, K.Y. (2007). Leader-follower output reference state feedback synchronization control of euler-lagrange systems, In Proc. Mediterranean Conf. on Control and Automation. Athens, Greece.
[18] Kyrkjebo, E. and Pettersen, K.Y. (2008). Operational space synchronization of two robot manipulators through a virtual velocity estimate, Modeling, Identification and Control. 29(2):59--66. doi:10.4173/mic.2008.2.3
[19] Kyrkjebo, E. and Pettersen, K.Y. (2009). A kinematic versus dynamic observer approach to coordination control in terms of estimation principle and practical performance, In European Control Conference. 2009.
[20] Kyrkjebo, E., Pettersen, K.Y., Wondergem, M., and Nijmeijer, H. (2006). Output synchronization control of ship replenishment operations: Theory and experiments, Control Engineering Practice, 2006. 15(6):741 -- 755. doi:10.1016/j.conengprac.2006.07.001
[21] Lefeber, A. A.J. (2000). Tracking Control of Nonlinear Mechanical Systems, Ph.D. thesis, University of Twente, The Netherlands.
[22] Loria, A., Kelly, R., Ortega, R., and Santibanez, V. (1997). On global output feedback regulation of euler-lagrange systems with bounded inputs, IEEE Trans. on Automatic Control. 42(8):1138 -- 1143. doi:10.1109/9.618243
[23] Luenberger, D.G. (1971). An introduction to observers, IEEE Trans. on Automatic Control. 16(6):596 -- 602. doi:10.1109/TAC.1971.1099826
[24] Marino, R. and Tomei, P. (1995). Nonlinear Control Design: Geometric, Adaptive and Robust, Prentice Hall.
[25] Nijmeijer, H. and Fossen, T.I. (1999). New Directions in Nonlinear Observer Design, volume 244 of Lecture Notes in Control and Information Sciences, Springer Verlag, London. doi:10.1007/BFb0109917
[26] Nijmeijer, H. and Mareels, I. (1997). An observer looks at synchronization, IEEE Trans. on Circuits and Systems I 44. pages 882 -- 890. doi:10.1109/81.633877
[27] Nijmeijer, H. and Rodriguez-Angeles, A. (2003). Synchronization of Mechanical Systems, volume46, World Scientific Series on Nonlinear Science, Series A.
[28] Nishigami, K., Yasuda, Y., and Hirata, K. (2009). An output synchronization control design for systems with input magnitude constraints, In ICCAS-SICE, 2009. pages 3077--3082.
[29] Ortega, R. and Spong, M.W. (1989). Adaptive motion control of rigid robots: A tutorial, Automatica. 25(6):877 -- 888. doi:10.1016/0005-1098(89)90054-X
[30] Paulsen, M.J. and Egeland, O. (1995). Tracking controller and velocity observer for mechanical systems with nonlinear damping terms, In Proc. 3rd European Control Conf. Rome, Italy.
[31] Peng, Z., Wang, D., Chen, Z., Hu, X., and Lan, W. (2013). Adaptive dynamic surface control for formations of autonomous surface vehicles with uncertain dynamics, Control Systems Technology, IEEE Transactions on. 21(2):513--520. doi:10.1109/TCST.2011.2181513
[32] Pettersen, K.Y. and Nijmeijer, H. (1998). Tracking control of an underactuated surface vessel, In Proc. 37th IEEE Conf. on Decision and Control. Tampa, FL, USA, pages 4561 -- 4566. doi:10.1109/cdc.1998.762046
[33] Pogromsky, Y.A. and Nijmeijer, H. (1998). Observer based robust synchronization of dynamical systems, Int. Journal on Bifurcation and Chaos. pages 2243--2254. doi:10.1142/S0218127498001832
[34] Rodriguez-Angeles, A. and Nijmeijer, H. (2001). Coordination of two robot manipulators based on position measurements only, Int. Journal of Control. 74:1311 -- 1323. doi:10.1080/00207170110065893
[35] Salichs, M., Puente, E., Gachet, D., and Moreno, L. (1991). Trajectory tracking for a mobile robot - an application to contour following, In Proc. Int. Conf. on Industrial Electronics, Control and Instrumentation. Kobe, pages 1067 -- 1070. doi:10.1109/iecon.1991.239143
[36] Sciavicco, L. and Siciliano, B. (1996). Modeling and Control of Robot Manipulators, McGraw-Hill Series in Electrical and Computer Engineering. McGraw-Hill.
[37] Skjetne, R., Smogeli, O.N., and Fossen, T.I. (2004). A nonlinear ship maneuvering model: Identification and adaptive control with experiments for a model ship, Modeling, Identification and Control. 25(1):3 -- 27. doi:10.4173/mic.2004.1.1
[38] Slotine, J.-J.E. and Li, W. (1987). Adaptive manipulator control a case study, In Proc. 1987 IEEE Int. Conf. on Robotics and Automation. pages 1392 -- 1400. doi:10.1109/ROBOT.1987.1087895
[39] Spong, M.W. and Vidyasagar, M. (1989). Robot Dynamics and Control, John Wiley & Sons, New Yor.

  title={{Dynamic and kinematic observers for output coordination control of Euler-Lagrange systems: A comparison and applications}},
  author={Kyrkjebø, Erik},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}