“Multicopter Design Optimization and Validation”

Authors: Øyvind Magnussen, Morten Ottestad and Geir Hovland,
Affiliation: University of Agder
Reference: 2015, Vol 36, No 2, pp. 67-79.

Keywords: Multicopter, multirotor, drone, UAV, mathematical modeling, design optimization, experimental validation

Abstract: This paper presents a method for optimizing the design of a multicopter unmanned aerial vehicle (UAV, also called multirotor or drone). In practice a set of datasheets is available to the designer for the various components such as battery pack, motor and propellers. The designer can not normally design the parameters of the actuator system freely, but is constrained to pick components based on available datasheets. The mixed-integer programming approach is well suited to design optimization in such cases when only a discrete set of components is available. The paper also includes an experimental section where the simulated dynamic responses of optimized designs are compared against the experimental results. The paper demonstrates that mixed-integer programming is well suited to design optimization of multicopter UAVs and that the modeling assumptions match well with the experimental validation.

PDF PDF (1072 Kb)        DOI: 10.4173/mic.2015.2.1

DOI forward links to this article:
[1] Mark O. Milhouse (2015), doi:10.1145/2808062.2808075
[2] Witold Pawlus, Geir Hovland, Martin Choux, Damian Frick and Manfred Morari (2015), doi:10.1109/IECON.2015.7392307
[3] Hemjyoti Das, Venkatesh Baskaran and Hemendra Arya (2016), doi:10.1109/ICCICCT.2016.7988001
[4] Maxim Tyan, Nhu Van Nguyen, Sangho Kim and Jae-Woo Lee (2017), doi:10.1016/j.ast.2017.09.008
[5] Umang Agarwal (2017), doi:10.1109/ISED.2017.8303947
[6] Al Al, Arfita Yuana Dewi, Taufal Hidayat, T. Baaken, P. van der Sijde, G. Maas, Zaidir and M. Yahya (2018), doi:10.1051/matecconf/201821501013
[7] Guang-Xun Du and Quan Quan (2019), doi:10.2514/1.C035150
[8] Xunhua Dai, Quan Quan, Jinrui Ren and Kai-Yuan Cai (2019), doi:10.1109/TIE.2018.2885715
[9] Z.J. Chen, K.A. Stol and P.J. Richards (2019), doi:10.1016/j.ast.2019.06.038
[10] Xiang He, Joseph R. Bourne, Jake A. Steiner, Cole Mortensen, Kyle C. Hoffman, Christopher J. Dudley, Ben Rogers, Donald M. Cropek and Kam K. Leang (2019), doi:10.1109/JSYST.2019.2905807
[11] Marcin Biczyski, Rabia Sehab, James F. Whidborne, Guillaume Krebs and Patrick Luk (2020), doi:10.1155/2020/9689604
[12] Tao Du, Adriana Schulz, Bo Zhu, Bernd Bickel and Wojciech Matusik (2016), doi:10.1145/2980179.2982427
[13] Z. Jeremy Chen, Jeremie X. J. Bannwarth, Karl A. Stol and Peter J. Richards (2018), doi:10.1109/ICUAS.2018.8453383
[14] He Zhu, Hong Nie, Limao Zhang, Xiaohui Wei and Ming Zhang (2020), doi:10.1016/j.ast.2020.106206
[1] Amazon. (2015). Prime Air, http://www.amazon.com/b?node=8037720011, Accessed: 2015-04-07.
[2] Bemporad, A. and Morari, M. (1999). Control of systems integrating logic, dynamics, and constraints, Automatica. 35(3):407--427. doi:10.1016/S0005-1098(98)00178-2
[3] Clausen, J. (1999). Branch and bound algorithms - principles and examples, http://www.diku.dk/OLD/undervisning/2003e/datV-optimer/JensClausenNoter.pdf, 1999. Accessed: 2015-04-07.
[4] Hehn, M. and D'Andrea, R. (2014). A frequency domain iterative learning algorithm for high-performance, periodic quadrocopter maneuvers, Mechatronics. 24(8):954--965. doi:10.1016/j.mechatronics.2014.09.013
[5] HobbyKing. (2015). Online shop, http://www.hobbyking.com, Accessed: 2015-04-07.
[6] IBM. (2015). CPLEX Optimizer, http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer, 2015. Accessed: 2015-04-07.
[7] Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming, Combinatorica. 4(4):373--395. doi:10.1007/bf02579150
[8] Magnussen, O., Hovland, G., and Ottestad, M. (2014). Multicopter UAV Design Optimization, In Proc. IEEE/ASME Intl. Conf. on Mechatronic and Embedded Systems and Applications. 2014. doi:10.1109/MESA.2014.6935598
[9] Mignone, D. (2002). The really big collection of logic propositions and linear inequalities, Technical Report AUT01-11, ETH Zurich.
[10] Tyapin, I. and Hovland, G. (2009). Kinematic and Elastostatic Design Optimisation of the 3-DOF Gantry-Tau Parallel Kinematic Manipulator, Modeling, Identification and Control. 30(2):39--56. doi:10.4173/mic.2009.2.1
[11] Whitney, D. (1969). Optimum step size control for Newton-Raphson solution of nonlinear vector equations, Automatic Control, IEEE Transactions on. 14(5):572--574. ewbloc doi:10.1109/TAC.1969.1099261

  title={{Multicopter Design Optimization and Validation}},
  author={Magnussen, Øyvind and Ottestad, Morten and Hovland, Geir},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}