“Adapting Dynamic Mathematical Models to a Pilot Anaerobic Digestion Reactor”

Authors: Finn Haugen, Rune Bakke and Bernt Lie,
Affiliation: Telemark University College
Reference: 2013, Vol 34, No 2, pp. 35-54.

Keywords: Anaerobic digestion, bioreactor, biogas, mathematical modeling

Abstract: A dynamic model has been adapted to a pilot anaerobic reactor fed diarymanure. Both steady-state data from online sensors and laboratory analysis anddynamic operational data from online sensors are used in the model adaptation.The model is based on material balances, and comprises four state variables,namely biodegradable volatile solids, volatile fatty acids, acid generatingmicrobes (acidogens), and methane generating microbes (methanogens). The modelcan predict the methane gas flow produced in the reactor. The model may beused for optimal reactor design and operation, state-estimation and control.Also, a dynamic model for the reactor temperature based on energy balance ofthe liquid in the reactor is adapted. This model may be used for optimizationand control when energy and economy are taken into account.

PDF PDF (535 Kb)        DOI: 10.4173/mic.2013.2.1

DOI forward links to this article:
[1] Finn Haugen, Rune Bakke and Bernt Lie (2013), doi:10.4173/mic.2013.3.4
[2] Finn Haugen, Rune Bakke and Bernt Lie (2013), doi:10.4173/mic.2013.3.1
[3] Finn Haugen, Rune Bakke and Bernt Lie (2014), doi:10.1155/2014/572621
[4] F. Haugen, R. Bakke, B. Lie, J. Hovland and K. Vasdal (2015), doi:10.1016/j.compag.2015.01.001
[5] Yuhong Wang and Xiaohui Li (2019), doi:10.1109/ACCESS.2019.2908385
[6] F. Abunde Neba, Nana Y. Asiedu, Ahmad Addo, John Morken, Stein W. Østerhus and Razak Seidu (2019), doi:10.1016/j.watres.2019.114891
[7] Shadi Attar and Finn Haugen (2019), doi:10.4173/mic.2019.3.2
[8] F. Abunde Neba, Hoese M. Tornyeviadzi, Stein W. Østerhus and Razak Seidu (2019), doi:10.1016/j.watres.2019.115377
[9] F. Abunde Neba, Michel Tornyeviadzi, Ahmad Addo, Nana Y. Asiedu, John Morken, Stein W. Østerhus and Razak Seidu (2020), doi:10.1016/j.compchemeng.2020.106816
[10] Jose Luis Guzman and Babu Joseph (2020), doi:10.1007/s10956-020-09860-6
[11] A. Dychko, N. Remez, I. Opolinskyi, S. Kraychuk, N. Ostapchuk and L. Yevtieieva (2018), doi:10.2478/lpts-2018-0011
[12] Samuel Emebu, Ji i Pecha and Dagmar Jana ova (2022), doi:10.1016/j.rser.2022.112288
[13] Hao Lu, Huazhe Wang, Qinglian Wu, Haichao Luo, Qi Zhao, Banghai Liu, Qishi Si, Shanshan Zheng, Wanqian Guo and Nanqi Ren (2023), doi:10.1016/j.scitotenv.2022.158849
[14] Muhammad Nihal Naseer, Khurram Kamal, Muhammad Abid, Asif Iqbal, Hamdullah Khan, Ch. Muhammad Zubair, Sagar Kumar, Tahir Abdul Hussain Ratlamwala, Malik Muhammad Nauman and P. Davide Cozzoli (2022), doi:10.1155/2022/8790631
[15] Hemlata Karne, Aayush Bendre and Amartya Singh (2023), doi:10.1016/j.matpr.2023.01.303
[16] Kar Ming Shaw, Phaik Eong Poh, Yong Kuen Ho, Zhi Yuan Chen and Irene Mei Leng Chew (2024), doi:10.1016/j.cej.2024.149826
References:
[1] Andrews, J.F. Graef, S.P. (1971). Dynamic modeling and simulation of the anaerobic digestion process, In: Anaerobic Biological Treatment Processes. R.F. Gould.ed.. Advances in Chemistry Series, Amer. Chem. Soc, Washington D. C., 105:126--162 doi:10.1021/ba-1971-0105.ch008
[2] Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlovstahis, S.G., Rozzi, A., Sanders, W. T.M., Siegrist, H., Vavilin, V.A. (2002). Anaerobic Digestion Model No 1, Scientific and Technical Report 15, IWA Publising.
[3] Bernard, O., Hadj-Sadok, Z., Dochain, D., Genovesi, A., Steyer, J. (2001). Dynamical Model Development and Parameter Identification for an Anaerobic Wastewater Treatment Process, Biotechnology and Bioengineering, 7.4 doi:10.1002/bit.10036
[4] Davison, A.C. Hinkley, D.V. (1997). Bootstrap Methods and their Application, Cambridge University Press doi:10.1017/CBO9780511802843
[5] Deublein, D. Steinhauser, A. (2010). Biogas from Waste and Renewable Resources, Wiley.
[6] Dochain, D. Vanrolleghem, P. (2001). Dynamical Modelling and estimation in Wastewater Treatment Processes, IWA Publishing.
[7] Edgar, T.F., Himmelblau, D., Lasdon, L. (2001). Optimization of Chemical Processes, McGraw-Hill.
[8] Esbensen, K. Paasch-Mortensen, P. (2010). Process sampling: Theory of sampling -- the missing link in process analytical technologies, In Bakeev, K..ed: Process Analytical Technology. Wiley doi:10.1002/9780470689592.ch3
[9] Gavala, H.N., Angelidaki, I., Ahring, B.K. (2003). Kinetics and modeling of anaerobic digestion process, Advances in Biochemical Engineering/Biotechnology, Springer-Verlag, 81.
[10] Grüne, L. Pannek, J. (2011). Nonlinear Model Predictive Control, Springer-Verlag, London doi:10.1007/978-0-85729-501-9
[11] Hashimoto, A.G., Chen, Y.R., Varel, V.H. (1981). Theoretical Aspect of Anaerobic Fermentation: State-Of-The-Art, Livestock Wastes: A Renewable Resource, American Society of Agricultural Engineers.
[12] Haugen, F., Bakke, R., Vasdal, K., Bergland, W. (2012). Foss Biolab, http://fossbiolab.no.
[13] Hill, D.T. (1983). Simplified Monod kinetics of methane fermentation of animal wastes, Agric. Wastes, 5:1--16 doi:10.1016/0141-4607(83)90009-4
[14] Hill, D.T. Barth, C.L. (1977). A dynamic model for simulation of animal waste digestion, J. Water Pollution Control Federation, 4.10.
[15] Husain, A. (1998). Mathematical models of the kinetics of anaerobic digestion -- A selected review, Biomass and Bioenergy, 1.5/6.
[16] Lyberatos, G. Skiadas, I.V. (1999). Modeling of anaerobic digestion - A review, Global Nest: the Int. J., .2:63--76.
[17] Lyseng, B.C., Bergland, W., Botheju, D., Haugen, F., Bakke, R. (2012). Biogas reactor modelling with ADM1, Telemark Open Research Archive.TEORA, Norway, http://teora.hit.no/dspace/handle/2282/1311.
[18] Reichert, P. (1998). AQUASIM 2,0: User Manual, Technical report. Swiss Federal Institute for Environmental Science and Technology.EAWAG.
[19] Rosen, C., D., Gernaey, K.V., Pons, M.N., Jeppsson, U. (2006). Implementing ADM1 for plant-wide benchmark simulations in Matlab/Simulink, Water Science and& Technology, IWA Publishing. 5.4:11--19.
[20] Seborg, D.E., Edgar, T.F., Mellichamp, D.A. (2004). Process Dynamics and Control, 2. Ed. Wiley.
[21] Simeonov, I., Momchev, V., Grancharov, D. (1996). Dynamic modeling of mesophilic anaerobic digestion of animal waste, Water Research, 30(5):1087--1094 doi:10.1016/0043-1354(95)00270-7
[22] Simon, D. (2006). Optimal State Estimation, Wiley.
[23] Stromberg, S. (2010). Development and Evaluation of Numerical Models for Anaerobic Digestion, M.Sc. thesis. Lund Univ., Sweden.
[24] Tchobanoglous, G., Burton, F.G., Stensel, H.D. (2003). Wastewater Engineering: Treatment and Reuse, Metcalf and Eddy, McGraw Hill.
[25] Varmuza, K. Filzmoser, P. (2009). Introduction to Multivariable Statistical Analysis in Chemometrics, CRC Press, Taylor and& Francis Group.
[26] Zaher, U., Pandey, P., Chen, S. (2009). A simple elemental continuity based model application to study the anaerobic microbial activity for the treatment of dairy manure, Appl. Math. Modelling, 33.
[27] Zaher, U., Rodriguez, J., Franco, A., Vanrolleghem, P.A. (2003). Application of the IWA ADM1 model to simulate anaerobic digester dynamics using a concise set of practical measurements, In IWA Conference on Env. Biol. -- Advancement on Water and Wastewater Applications in the Tropics. Kuala Lumpur, Malaysia.


BibTeX:
@article{MIC-2013-2-1,
  title={{Adapting Dynamic Mathematical Models to a Pilot Anaerobic Digestion Reactor}},
  author={Haugen, Finn and Bakke, Rune and Lie, Bernt},
  journal={Modeling, Identification and Control},
  volume={34},
  number={2},
  pages={35--54},
  year={2013},
  doi={10.4173/mic.2013.2.1},
  publisher={Norwegian Society of Automatic Control}
};