“Control of Spacecraft Formation with Disturbance Rejection and Exponential Gains”

Authors: Rune Schlanbusch and Raymond Kristiansen,
Affiliation: Narvik University College
Reference: 2013, Vol 34, No 1, pp. 11-18.

Keywords: Spacecraft Formation, Translational Control, Disturbance Rejection, Nonlinear Gains

Abstract: We address the problem of state feedback translational motion control of a spacecraft formation through a modified sliding surface controller using variable gains and I^2 action for disturbance rejection. The exponential varying gains ensure faster convergence of the state trajectories during attitude maneuver while keeping the gains small (and the system less stiff) for station keeping. Integral action is introduced for rejection of disturbances with a constant nonzero mean such as aerodynamic drag. A direct consequence is a drop in energy consumption when affected by sensor noise and a decrease in size of the error states residual when operating close to the equilibrium point. A large number of simulation results are presented to show the control performance.

PDF PDF (535 Kb)        DOI: 10.4173/mic.2013.1.2

DOI forward links to this article:
[1] Espen Oland (2017), doi:10.1109/ICMAE.2017.8038729
[2] Daero Lee (2018), doi:10.1016/j.ast.2018.01.027
[3] Espen Oland and Raymond Kristiansen (2019), doi:10.1109/ICMAE.2019.8881025
[4] Espen Oland, Raymond Kristiansen and Jan Tommy Gravdahl (2020), doi:10.1109/TCST.2018.2873507
[1] Battin, R.H. (1999). An Introduction to the Mathematics and Methods of Astrodynamics, Revised Edition, AIAA Education Series. American Institute of Aeronautics and Astronautics, Reston, VA. ISBN: 1-56347-342-9.
[2] Chaturvedi, N., McClamroch, N., Bernstein, D. (2009). Asymptotic smooth stabilization of the inverted 3-d pendulum, IEEE Trans. on Automatic Control, 5.6:1204--1215 doi:10.1109/TAC.2009.2019792
[3] Clohessy, W.H. Wiltshire, R.S. (1960). Terminal guidance system for satellite rendezvous, Journal of Aerospace Sciences, 2.9:653--658.
[4] Egeland, O. Gravdahl, J.T. (2002). Modeling and Simulation for Automatic Control, Marine Cybernetics, Trondheim, Norway. ISBN: 82-92356-01-0.
[5] Gr√łtli, E.I. (2010). Robust stability and control of spacecraft formations, Ph.D. thesis, Dept. Engineering Cybernetics, Norwegian University of Science and& Technology.
[6] Hill, G.W. (1878). Researches in the lunar theory, American Journal of Mathematics, s.1:5--26.
[7] Kapila, V., Sparks, A.G., Buffington, J., Yan, Q. (1999). Spacecraft formation flying: Dynamics and control, In Proc. American Control Conf. San Diego, CA, USA doi:10.1109/ACC.1999.786328
[8] Kelly, R., Santibanez, V., Loria, A. (2005). Control of robot manipulators in joint space, Advanced textbooks in control engineering. Springer Verlag. ISBN: 1-85233-994-2.
[9] Kristiansen, R. (2008). Dynamic Synchronization of Spacecraft - Modeling and Coordinated Control of Leader-Follower Spacecraft Formations, Ph.D. thesis, Dept. Engineering Cybernetics, Norwegian University of Science and& Technology.
[10] Kristiansen, R. Nicklasson, P.J. (2009). Spacecraft formation flying: A review and new results on state feedback control, Acta Astronautica, 6.11-12:1537--1552 doi:10.1016/j.actaastro.2009.04.014
[11] Manikonda, V., Arambel, P.O., Gopinathan, M., Mehra, R.K., Hadaegh, F.Y. (1999). A model predictive control-based approach for spacecraft formation keeping and attitude control, In Proc. American Control Conf. San Diego, CA, USA doi:10.1109/ACC.1999.786367
[12] McInnes, C.R. (1995). Autonomous ring formation for a planar constellation of satellites, AIAA Journal of Guidance, Control and Dynamics, 1.5:1215--1217.
[13] Ortega, R., Loria, A., Kelly, R. (1995). A semiglobally stable output feedback PI2D regulator for robot manipulators, IEEE Trans. on Automatic Control, 4.8:1432--1436 doi:10.1109/9.402235
[14] Paden, B. Panja, R. (1988). Globally asymptotically stable PD+ controller for robot manipulators, Intl. Journal of Control, 4.6:1697--1712.
[15] Ploen, S.R., Scharf, D.P., Hadaegh, F.Y., Acikmese, A.B. (2004). Dynamics of Earth orbiting formations, In Proc. AIAA Guidance, Navigation and Control. Providence, RI, USA.
[16] Scharf, D.P., Hadaegh, F.Y., Ploen, S.R. (2004). A survey of spacecraft formation flying guidance and control, part ii: Control. In Proc. American Control Conf. Boston, MA, USA.
[17] Schaub, H. Junkins, J.L. (2003). Analytical Mechanics of Space Systems, AIAA Education Series. American Institute of Aeronautics and Astronautics. ISBN: 1-56347-563-4.
[18] Schlanbusch, R., Loria, A., Kristiansen, R., Nicklasson, P.J. (2010). PD+ attitude control of rigid bodies with improved performance, In Proc. 49th IEEE Conf. on Decision and Control. Atlanta, GA, USA doi:10.1109/CDC.2010.5717227
[19] Slotine, J. J.-E. Li, W. (1987). On the adaptive control of robot manipulators, Intl. Journal of Robotics Research, .3:49--59.
[20] Wang, P. K.C. Hadaegh, F.Y. (1996). Coordination and control of multiple microspacecraft moving in formation, Journal of the Astronautical Sciences, 4.3:315--355.
[21] Yan, Q., Kapila, V., Sparks, A.G. (2000). Pulse-based periodic control for spacecraft formation flying, In Proc. American Control Conf. Chicago, IL, USA doi:10.1109/ACC.2000.878922
[22] Yan, Q., Yang, G., Kapila, V., deQueiroz, M. (2000). Nonlinear dynamics, trajectory generation, and adaptive control of multiple spacecraft in periodic relative orbits, In Proc. AAS Guidance and Control Conf. Breckenridge, CO, USA.

  title={{Control of Spacecraft Formation with Disturbance Rejection and Exponential Gains}},
  author={Schlanbusch, Rune and Kristiansen, Raymond},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}