“Multiobjective Optimum Design of a 3-RRR Spherical Parallel Manipulator with Kinematic and Dynamic Dexterities”

Authors: Guanglei Wu,
Affiliation: Aalborg University
Reference: 2012, Vol 33, No 3, pp. 111-121.

Keywords: Spherical parallel manipulator, multiobjective optimization, Cartesian stiffness matrix, dexterity, Generalized Inertia Ellipsoid

Abstract: This paper deals with the kinematic synthesis problem of a 3-RRR spherical parallel manipulator, based on the evaluation criteria of the kinematic, kinetostatic and dynamic performances of the manipulator. A multiobjective optimization problem is formulated to optimize the structural and geometric parameters of the spherical parallel manipulator. The proposed approach is illustrated with the optimum design of a special spherical parallel manipulator with unlimited rolling motion. The corresponding optimization problem aims to maximize the kinematic and dynamic dexterities over its regular shaped workspace.

PDF PDF (575 Kb)        DOI: 10.4173/mic.2012.3.3

DOI forward links to this article:
[1] Cammarata Alessandro and Sinatra Rosario (2014), doi:10.1016/j.mechmachtheory.2013.10.010
[2] Guanglei Wu (2014), doi:10.4173/mic.2014.1.2
[3] Guanglei Wu (2014), doi:10.1155/2014/296250
[4] Guanglei Wu, Stéphane Caro and Jiawei Wang (2015), doi:10.1016/j.mechmachtheory.2015.07.012
[5] Ebrahim Abedloo, Amir Molaei and Hamid D. Taghirad (2014), doi:10.1109/ICRoM.2014.6990964
[6] R. Khezrian, E. Abedloo, M. Farhadmanesh and S. A. A. Moosavian (2014), doi:10.1109/ICRoM.2014.6990959
[7] Guanglei Wu and Ping Zou (2016), doi:10.1016/j.mechmachtheory.2016.07.017
[8] Yanzhi Zhao, Jinglei Wang, Yachao Cao, Bowen Liang and Tieshi Zhao (2017), doi:10.1016/j.mechmachtheory.2016.10.008
[9] J. Brinker, B. Corves and Y. Takeda (2018), doi:10.1016/j.mechmachtheory.2017.11.029
[10] Abdur Rosyid, Bashar El-Khasawneh and Anas Alazzam (2018), doi:10.1017/S0263574718000152
[11] José-Alfredo Leal-Naranjo, Marco Ceccarelli, Christopher-René Torres-San-Miguel, Luis-Antonio Aguilar-Perez, Guillermo Urriolagoitia-Sosa and Guillermo Urriolagoitia-Calderón (2018), doi:10.1590/1679-78254044
[12] Jaime Gallardo-Alvarado, Ramon Rodriguez-Castro, Luciano Perez-Gonzalez and Carlos Aguilar-Najera (2018), doi:10.3390/robotics7020029
[13] J. J. Hernández-Gómez, I. Medina, C. R. Torres-San Miguel, A. Solís-Santomé, C. Couder-Castañeda, J. C. Ortiz-Alemán and J. I. Grageda-Arellano (2018), doi:10.1155/2018/9592623
[14] José-Alfredo Leal-Naranjo, Jorge-Alberto Soria-Alcaraz, Christopher-René Torres-San Miguel, Juan-Carlos Paredes-Rojas, Andrés Espinal and Horacio Rostro-González (2019), doi:10.1016/j.mechmachtheory.2019.06.023
[15] Andrew L. Orekhov and Nabil Simaan (2019), doi:10.1115/1.4043685
[16] Iliyas Tursynbek, Aibek Niyetkaliye and Almas Shintemirov (2019), doi:10.1109/COASE.2019.8843090
[17] Abdur Rosyid, Bashar El-Khasawneh and Anas Alazzam (2017), doi:10.5772/intechopen.71406
[18] Skvortsova Valeria and Popov Dmitry (2019), doi:10.1109/DCNAIR.2019.8875585
[19] Gleb S. Filippov, Victor A. Glazunov, Anna N. Terekhova, Aleksey B. Lastochkin, Robert A. Chernetsov and Lyubov V. Gavrilina (2020), doi:10.1007/978-3-030-39162-1_31
[20] Soheil Zarkandi (2020), doi:10.1177/0954406220938806
[21] Alejandro T. Cruz-Reyes, Manuel Arias-Montiel and Ricardo Tapia-Herrera (2021), doi:10.1007/978-3-030-75271-2_4
[22] Vijaykumar Kulkarni, C. V. Chandrashekara and D. Sethuram (2022), doi:10.1007/978-981-16-0550-5_66
References:
[1] Altuzarra, O., Salgado, O., Hernandez, A., Angeles, J. (2009). Multiobjective optimum design of a symmetric parallel schönflies-motion generator, ASME J. Mechanical Design, 13.3:031002 doi:10.1115/1.3066659
[2] Asada, H. (1983). A geometrical representation of manipulator dynamics and its application to arm design, ASME J. Dynamic Systems, Measurement and Control, 10.3:131--142 doi:10.1115/1.3140644
[3] Asada, H. Granito, J. (1985). Kinematic and static characterization of wrist joints and their optimal design, In IEEE International Conference on Robotics and Automation. pp. 244--250 doi:10.1109/ROBOT.1985.1087324
[4] Bai, S. (2010). Optimum design of spherical parallel manipulator for a prescribed workspace, Mechanism and Machine Theory, 4.2:200--211 doi:10.1016/j.mechmachtheory.2009.06.007
[5] Bai, S., Hansen, M.R., Andersen, T.O. (2009). Modelling of a special class of spherical parallel manipulators with Euler parameters, Robotica, 2.2:161--170 doi:10.1017/S0263574708004402
[6] Bonev, I.A. (2008). Direct kinematics of zero-torsion parallel mechanisms, In IEEE International Conference on Robotics and Automation. Pasadena, California, USA, pp. 3851--3856 doi:10.1109/ROBOT.2008.4543802
[7] Bonev, I.A. Gosselin, C.M. (2006). Analytical determination of the workspace of symmetrical spherical parallel mechanisms, IEEE Transactions on Robotics, 2.5:1011--1017 doi:10.1109/TRO.2006.878983
[8] Caro, S., Chablat, D., Ur-Rehman, R., Wenger, P. (2011). Multiobjective design optimization of 3-PRR planar parallel manipulators, In Global Product Development, pages 373--383. Springer-Verlag Berlin Heidelberg doi:10.1007/978-3-642-15973-2\_37
[9] Cavallo, E. Michelini, R.C. (2004). A robotic equipment for the guidance of a vectored thrustor, In 35th International Symposium on Robotics. Paris, France.
[10] Ceccarelli, M., Carbone, G., Ottaviano, E. (2005). Multi criteria optimum design of manipulators, In Bulletin of the Polish Academy of Technical Sciences, 5.1:9--18.
[11] Chaker, A., Mlika, A., Laribi, M.A., Romdhane, L., Zeghloul, S. (2012). Synthesis of spherical parallel manipulator for dexterous medical task, Frontiers of Mechanical Engineering, .2:150--162 doi:10.1007/s11465-012-0325-4
[12] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evolutionary Computation, .2:182--197 doi:10.1109/4235.996017
[13] Durand, S.L. Reboulet, C. (1997). Optimal design of a redundant spherical parallel manipulator, Robotica, 1.4:399--405 doi:10.1017/S0263574797000490
[14] Gosselin, C.M. Angeles, J. (1989). The optimum kinematic design of a spherical three-degree-of-freedom parallel manipulator, ASME J. Mechanisms, Transmissions, and Automation in Design, 111:202--207 doi:10.1115/1.3258984
[15] Gosselin, C.M. Angeles, J. (1991). A global performance index for the kinematic optimization of robotic manipulators, ASME J. Mechanical Design, 11.3:220--226 doi:10.1115/1.2912772
[16] Gosselin, C.M. Hamel, J.F. (1994). The Agile Eye: a high-performance three-degree-of-freedom camera-orienting device, In IEEE International Conference on Robotics and Automation. San Diego, CA, pp. 781--786 doi:10.1109/ROBOT.1994.351393
[17] Hao, F. Merlet, J.-P. (2005). Multi-criteria optimal design of parallel manipulators based on interval analysis, Mechanism and Machine Theory, 4.2:157--171 doi:10.1016/j.mechmachtheory.2004.07.002
[18] Hay, A.M. Snyman, J.A. (2004). Methodologies for the optimal design of parallel manipulators, Inter. J. Numerical Methods in Engineering, 5.11:131--152 doi:10.1002/nme.871
[19] Hibbeler, R.C. (1997). Mechanics of Materials, Prentice Hall.
[20] Huang, T., Gosselin, C.M., Whitehouse, D.J., Chetwynd, D.G. (2003). Analytic approach for optimal design of a type of spherical parallel manipulators using dexterous performance indices, IMechE. J. Mechan. Eng. Sci., 21.4:447--455 doi:10.1243/095440603321509720
[21] Kong, K. Gosselin, C.M. (2004). Type synthesis of three-degree-of-freedom spherical parallel manipulators, Inter. J. Robotics Research, 2.3:237--245 doi:10.1177/0278364904041562
[22] Krefft, M. Hesselbach, J. (2005). Elastodynamic optimization of parallel kinematics, In Proceedings of the IEEE International Conference on Automation Science and Engineering. Edmonton, AB, Canada, pp. 357--362 doi:10.1109/COASE.2005.1506795
[23] Li, T. Payandeh, S. (2002). Design of spherical parallel mechanisms for application to laparoscopic surgery, Robotica, 2.2:133--138 doi:10.1017/S0263574701003873
[24] Liu, X.J., Jin, Z.L., Gao, F. (2000). Optimum design of 3-dof spherical parallel manipulators with respect to the conditioning and stiffness indices, Mechanism and Machine Theory, 35(9):1257--1267 doi:10.1016/S0094-114X(99)00072-5
[25] Lou, Y., Liu, G., Chen, N., Li, Z. (2005). Optimal design of parallel manipulators for maximum effective regular workspace, In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Alberta, pp. 795--800 doi:10.1109/IROS.2005.1545144
[26] Maxon. (2012). Maxon Motor and Gearhead products catalog, http://www.maxonmotor.com/maxon/view/catalog/.
[27] Merlet, J.-P. (2006). Jacobian, manipulability, condition number, and accuracy of parallel robots, ASME J. Mechanical Design, 12.1:199--206 doi:10.1115/1.2121740
[28] Merlet, J.-P. (2006). Parallel Robots, Kluwer, Norwell.
[29] Pashkevich, A., Chablat, D., Wenger, P. (2009). Stiffness analysis of overconstrained parallel manipulators, Mechanism and Machine Theory, 4.5:966--982 doi:10.1016/j.mechmachtheory.2008.05.017
[30] Stamper, R.E., Tsai, L.-W., Walsh, G.C. (1997). Optimization of a three-dof translational platform for well-conditioned workspace, In Proceedings of the IEEE International Conference on Robotics and Automation. Albuquerque, NM, pp.s 3250--3255 doi:10.1109/ROBOT.1997.606784
[31] Stock, M. Miller, K. (2003). Optimal kinematic design of spatial parallel manipulators: Application of linear delta robot, ASME J. Mechanical Design, 12.2:292--301 doi:10.1115/1.1563632
[32] Tsai, L.-W. (1998). The Jacobian analysis of parallel manipulators using reciprocal screws, In J.Lenarcibrevec and M.L. Husty, editors, Advances in Robot Kinematics: Analysis and Control, pp. 327--336. Kluwer Academic Publishers.


BibTeX:
@article{MIC-2012-3-3,
  title={{Multiobjective Optimum Design of a 3-RRR Spherical Parallel Manipulator with Kinematic and Dynamic Dexterities}},
  author={Wu, Guanglei},
  journal={Modeling, Identification and Control},
  volume={33},
  number={3},
  pages={111--121},
  year={2012},
  doi={10.4173/mic.2012.3.3},
  publisher={Norwegian Society of Automatic Control}
};