“Using Generalized Fibonacci Sequences for Solving the One-Dimensional LQR Problem and its Discrete-Time Riccati Equation”

Authors: Johan Byström, Lars P. Lystad and Per-Ole Nyman,
Affiliation: Luleå University of Technology and Narvik University College
Reference: 2010, Vol 31, No 1, pp. 1-18.

Keywords: LQR, Linear quadratic control, Optimal control, Fibonacci number, Golden ratio, Binet formula

Abstract: In this article we develop a method of solving general one-dimensional Linear Quadratic Regulator (LQR) problems in optimal control theory, using a generalized form of Fibonacci numbers. We find the solution R(k) of the corresponding discrete-time Riccati equation in terms of ratios of generalized Fibonacci numbers. An explicit Binet type formula for R(k) is also found, removing the need for recursively finding the solution at a given timestep. Moreover, we show that it is also possible to express the feedback gain, the penalty functional and the controller state in terms of these ratios. A generalized golden ratio appears in the corresponding infinite horizon problem. Finally, we show the use of the method in a few examples.

PDF PDF (430 Kb)        DOI: 10.4173/mic.2010.1.1

DOI forward links to this article:
[1] Thomas Brasch, Johan Byström and Lars Petter Lystad (2012), doi:10.1007/s10957-012-0061-2
[2] Zhen Chen, Binglong Cong and Xiangdong Liu (2013), doi:10.1155/2013/602869
[3] Przemys aw Ignaciuk (2016), doi:10.1016/j.jfranklin.2015.03.033
References:
[1] Balchen, J. (1977). Reguleringsteknikk, Tapir, Trondheim.
[2] Benavoli, A., Chisci, L., Farina, A. (2009). Fibonacci sequence, golden section, Kalman filter and optimal control, Signal Processing, 8.8:1483--1488 doi:10.1016/j.sigpro.2009.02.003
[3] Camouzis, E. Ladas, G. (2008). Dynamics of Third Order Rational Difference Equations with Open Problems and Conjectures, Chapman and& Hall / CRC, Boca Raton.
[4] Capponi, A., Farina, A., Pilotto, C. (2010). Expressing stochastic filters via number sequences, Signal Processing, 9.7:2124--2132 doi:10.1016/j.sigpro.2010.01.011
[5] Dickson, L.E. (2002). History of the Theory of Numbers, Volume I: Divisibility and Primality, The American Mathematical Society.
[6] Dunlap, R. (2003). The Golden Ratio and Fibonacci Numbers, World Scientific, Singapore.
[7] Elaydi, S. (2005). An Introduction to Difference Equations, 3rd ed.. Springer, New York.
[8] Huntley, H.E. (1970). The Divine Proportion: a Study in Mathematical Beauty, Dover Publications, Mineola.
[9] Kulenovic, M. R.S. Ladas, G. (2002). Dynamics of Second Order Rational Difference Equations: With open problems and conjectures, Chapman and& Hall / CRC, Boca Raton.
[10] Kwakernaak, H. Sivan, R. (1972). Linear optimal control systems, Wiley-Interscience, New York-London-Sydney.
[11] Lang, W. (2004). Riccati meets fibonacci, The Fibonacci Quarterly, 4.3:231--244.
[12] Lewis, F.L. Syrmos, V.L. (1995). Optimal control, 2nd Ed.. John Wiley and& Sons Inc., New York.
[13] Livio, M. (2002). The Golden Ratio: The Story of PHI, the World´s Most Astonishing Number, Broadway Books.
[14] Ribenboim, P. (2000). My Numbers, My Friends: Popular Lectures on Number Theory, Springer Verlag, New York.
[15] Walser, H. (2001). The Golden Section, The Mathematical Association of America.
[16] Åström, K. Wittenmark, B. (1996). Computer-Controlled Systems: Theory and Design, Prentice Hall.


BibTeX:
@article{MIC-2010-1-1,
  title={{Using Generalized Fibonacci Sequences for Solving the One-Dimensional LQR Problem and its Discrete-Time Riccati Equation}},
  author={Byström, Johan and Lystad, Lars P. and Nyman, Per-Ole},
  journal={Modeling, Identification and Control},
  volume={31},
  number={1},
  pages={1--18},
  year={2010},
  doi={10.4173/mic.2010.1.1},
  publisher={Norwegian Society of Automatic Control}
};