“Oxygen Effects in Anaerobic Digestion”

Authors: Deshai Botheju, Bernt Lie and Rune Bakke,
Affiliation: Telemark University College
Reference: 2009, Vol 30, No 4, pp. 191-201.

Keywords: anaerobic digestion, ADM 1, modelling, oxygen, simulation

Abstract: Free oxygen effects in bio-gasification are not well known, apart from the common understanding of oxygen being toxic and inhibitory for anaerobic micro-organisms. Some studies have, however, revealed increased solubilisation of organic matter in the presence of some free oxygen in anaerobic digestion. This article analyses these counterbalancing phenomena with a mathematical modelling approach using the widely accepted biochemical model ADM 1. Aerobic oxidation of soluble carbon and inhibition of obligatory anaerobic organisms are modelled using standard saturation type kinetics. Biomass dependent first order hydrolysis kinetics is used to relate the increased hydrolysis rate with oxygen induced increase in biomass growth. The amended model, ADM 1-Ox (oxygen), has 25 state variables and 22 biochemical processes, presented in matrix form. The computer aided simulation tool AQUASIM 2.1 is used to simulate the developed model. Simulation predictions are evaluated against experimental data obtained using a laboratory batch test array comprising miniature anaerobic bio-reactors of 100 ml total volume each, operated under different initial air headspaces giving rise to the different oxygen loading conditions. The reactors were initially fed with a glucose solution and incubated at 35 Celsius, for 563 hours. Under the oxygen load conditions of 22, 44 and 88 mg/L, the ADM1-Ox model simulations predicted the experimental methane potentials quite adequately. Both the experimental data and the simulations suggest a linear reduction of methane potential with respect to the increase in oxygen load within this range.

PDF PDF (467 Kb)        DOI: 10.4173/mic.2009.4.1

DOI forward links to this article:
[1] Haleh Shahriari, Mostafa Warith, Mohamed Hamoda and Kevin Kennedy (2013), doi:10.1016/j.jenvman.2013.03.042
[2] F. Raposo, M.A. De la Rubia, V. Fernández-Cegrí and R. Borja (2012), doi:10.1016/j.rser.2011.09.008
[3] B. Tartakovsky, P. Mehta, J.-S. Bourque and S.R. Guiot (2011), doi:10.1016/j.biortech.2011.02.097
[4] Deshai Botheju, Bernt Lie and Rune Bakke (2010), doi:10.4173/mic.2010.2.2
[5] Young-Mi Ahn, Jun Wi, Jin-Kyu Park, Sotaro Higuchi and Nam-Hoon Lee (2014), doi:10.4491/eer.2014.19.1.059
[6] Lucie Krayzelova, Jan Bartacek, Israel Díaz, David Jeison, Eveline I. P. Volcke and Pavel Jenicek (2015), doi:10.1007/s11157-015-9386-2
[7] María Antonieta Sánchez Góngora, Ignacio Enrique Peón Escalante, Teresita Cardona Juárez, Lesli Ortega Arroyo and Guillermo Urriolagoitia Calderón (2016), doi:10.15446/rev.colomb.biote.v18n1.57725
[8] Razieh Rafieenia, Francesca Girotto, Wei Peng, Raffaello Cossu, Alberto Pivato, Roberto Raga and Maria Cristina Lavagnolo (2016), doi:10.1016/j.wasman.2016.10.028
[9] Yong-Jun Kim, Jin-Kyu Park, Kazuo Tameda and Nam-Hoon Lee (2016), doi:10.17137/korrae.2016.24.3.53
[10] Razieh Rafieenia, Maria Cristina Lavagnolo and Alberto Pivato (2017), doi:10.1016/j.wasman.2017.05.024
[11] Omprakash Sarkar and S. Venkata Mohan (2017), doi:10.1016/j.biortech.2017.05.053
[12] Lucie Pokorna-Krayzelova, Kris E. Mampaey, Thomas P.W. Vannecke, Jan Bartacek, Pavel Jenicek and Eveline I.P. Volcke (2017), doi:10.1016/j.bej.2017.06.009
[13] Jincai Su and Yanyan Wei (2018), doi:10.1016/j.jwpe.2018.02.007
[14] Jincai Su and Yanyan Wei (2018), doi:10.1016/j.jwpe.2018.02.019
[15] Myovela Hawa, Manoni Mshandete Anthony and Imathiu Samuel (2019), doi:10.5897/AJB2018.16652
[16] Panagiotis Tsapekos, Merlin Alvarado-Morales, Panagiotis G. Kougias, Laura Treu and Irini Angelidaki (2019), doi:10.1007/s13399-019-00430-4
[17] Meisam Tabatabaei, Mortaza Aghbashlo, Elena Valijanian, Hamed Kazemi Shariat Panahi, Abdul-Sattar Nizami, Hossein Ghanavati, Alawi Sulaiman, Safoora Mirmohamadsadeghi and Keikhosro Karimi (2019), doi:10.1016/j.renene.2019.07.037
[18] Qing Chen, Wanqing Wu, Dacheng Qi, Yihong Ding and Zihao Zhao (2020), doi:10.1016/j.scitotenv.2019.136388
[19] Masaru K. Nobu, Takashi Narihiro, Ran Mei, Yoichi Kamagata, Patrick K. H. Lee, Po-Heng Lee, Michael J. McInerney and Wen-Tso Liu (2020), doi:10.1186/s40168-020-00885-y
[20] Prem Ananth Surendran C. and Shanmugam P. (2021), doi:10.1016/j.egyr.2020.10.071
[21] Zhuowei Zhang, Yin Yu, Hongbo Xi and Yuexi Zhou (2021), doi:10.1016/j.jclepro.2021.128343
[22] Zhuowei Zhang, Hongbo Xi, Yin Yu, Changyong Wu, Yang Yang, Zhenzhen Guo and Yuexi Zhou (2022), doi:10.1016/j.watres.2022.118119
[23] Sepehr Sanaye, Mohammad Hadi Mohammadi, Mohsen Yazdani and Reza Barati Rashvanlou (2022), doi:10.1016/j.enconman.2022.115989
[1] APHA, AWWA, WEF. (1995). Standard methods for the examination of water and wastewater, Washington DC, USA.
[2] Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S., Pavlostathis, S.G., Rozzi, A., Sanders, W., Siegrist, H., Vavilin, V. (2002). Anaerobic digestion Model No, 1. IWA publishing.
[3] Botheju, D., Lie, B., Bakke, R. (2009). Modeling free oxygen effects in anaerobic digestion, In Proceedings of the MATHMOD 2009 - 6th Vienna International Conference on Mathematical Modeling, Vienna, 11-13 February.
[4] Botheju, D., Samarakoon, G., Chen, C., Bakke, R. (2010). An experimental study on the effects of oxygen in bio-gasification; part 1 and& part 2, In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ 10), Granada (Spain), 23-25 March.
[5] Gerritse, J., Schut, F., Gottschal, J.C. (1990). Mixed chemostat cultures of obligately aerobic and fermentative or methanogenic bacteria grown under oxygen-limiting conditions, FEMS Microbiology Letters, 66:87--94 doi:10.1111/j.1574-6968.1990.tb03977.x
[6] Hedrick, D.B., Guckert, J.B., White, D.C. (1991). The effects of oxygen and chloroform on microbial activities in a high-solids high-productivity anaerobic biomass reactor, Biomass and Bioenergy. 1(4):207--212 doi:10.1016/0961-9534(91)90004-V
[7] Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M.C., vR Marais, G. (1995). Activated sludge model no, 2. Technical report, IAWQ.
[8] Henze, M., Harremoes, P., Jansen, J.C., Arvin, E. (2002). Wastewater Treatment, Biological and chemical processes, Springer.
[9] Johansen, J.E. Bakke, R. (2006). Enhancing hydrolysis with microaeration, Water science and Technology, 5.8:43 -- 50 doi:10.2166/wst.2006.234
[10] Kato, M.T., Field, J.A., Lettinga, G. (1997). Anaerobic tolerance to oxygen and the potentials of anaerobic and aerobic cocultures for wastewater treatment, Brazilian J. Chemical Engineering, 14.4:ISSN 0104--6632 doi:10.1590/S0104-66321997000400015
[11] Liden, G., Franzen, C.J., Niklasson, C. (1994). A new method for studying microaerobic fermentations, i). a theoretical analysis of oxygen programmed fermentation. Biotechnology and Bioengineering, 44:419 -- 427 doi:10.1002/bit.260440404
[12] Monod, J. (1949). The growth of bacterial cultures, Annual Review of Microbiology. 3:371 -- 393 doi:10.1146/annurev.mi.03.100149.002103
[13] Mshandete, A., Börjesson, L., Kivaisi, A.K., Rubindamayugi, S.T., Mattiasson, B. (2005). Enhancement of anaerobic batch digestion of sisal pulp waste by mesophilic aerobic pre-treatment, Water Research, 39:1569 -- 1575 doi:10.1016/j.watres.2004.11.037
[14] Nguyen, P. H.L., Kuruparan, P., Visvanathan, C. (2007). Anaerobic digestion of municipal solid waste as a treatment prior to landfill, Bioresource Technology, 9.2:380--387 doi:10.1016/j.biortech.2005.12.018
[15] O´Keefe, D.M. Chynoweth, D. (2000). Influence of phase separation, leachate recycle and aeration on treatment of municipal solid waste in simulated landfll cells, Bioresource Technology, 72:55--66 doi:10.1016/S0960-8524(99)00089-9
[16] Pirt, S.J. Lee, Y.K. (1983). Enhancement of methanogenesis by traces of oxygen in bacterial digestion of biomass, FEMS Microbiology Letters, 18:61--63 doi:10.1111/j.1574-6968.1983.tb00449.x
[17] Polanco, M.F., Diaz, I., Perez, S.I., Lopes, A.C., Polanco, F.F. (2009). Hydrogen sulphide removal in the anaerobic digestion of sludge by micro-aerobic processes: Pilot plant experience, Water science and Technology, 6.12:3045--3050 doi:10.2166/wst.2009.738
[18] Reichert, P. (1998). AQUASIM 2,0-User manual; Computer program for the identification and simulation of Aquatic Systems, Swiss Federal Institute for Environmental Science and Technology.EAWAG.
[19] Tang, Y., Shigematsu, T., Ikbal, Morimura, S., Kida, K. (2004). The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid waste digester, Water Research, 38:2537--2550 doi:10.1016/j.watres.2004.03.012
[20] Weiss, R.F. (1970). The solubility of nitrogen, oxygen and argon in water and seawater, Deep-Sea Research, 17:721--735.
[21] Zhou, W., Imai, T., Ukita, M., Li, F., Yuasa, A. (2007). Effect of limited aeration on the anaerobic treatment of evaporator condensate from a sulfite pulp mill, Chemosphere, 66:924--929 doi:10.1016/j.chemosphere.2006.06.004

  title={{Oxygen Effects in Anaerobic Digestion}},
  author={Botheju, Deshai and Lie, Bernt and Bakke, Rune},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}