“A new perspective on stable inversion of non-minimum phase nonlinear systems”

Authors: Alexey Pavlov and Kristin Y. Pettersen,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 2008, Vol 29, No 1, pp. 29-35.

Keywords: Stable inversion, non-minimum phase systems, nonlinear systems, convergent systems

Abstract: We present a new perspective on the problem of stable inversion of nonlinear non-minimum phase systems. It is based on the notion of convergent systems. The machinery of convergent systems allows us to obtain novel qualitative and quantitative conditions for solving this problem. These conditions provide insight into the dynamics behind the stable inversion problem and make it possible to treat this problem in a non-local way. Qualitatively, they cover the conditions for the stable inversion of non-minimum phase nonlinear systems previously reported in literature and allow us to solve this problem for a broader class of systems. The proposed approach is supported with a novel computational method.

PDF PDF (148 Kb)        DOI: 10.4173/mic.2008.1.3

DOI forward links to this article:
[1] Alexey Pavlov and Kristin Y. Pettersen (2007), doi:10.1109/CDC.2007.4434276
[2] H. T. van der Scheer and A. Doelman (2017), doi:10.1007/s00422-017-0722-1
[3] Jurgen van Zundert and Tom Oomen (2017), doi:10.1080/00207179.2017.1380315
[1] Demidovich, B. (1967). Lectures on stability theory, in Russian. Nauka, Moscow.
[2] Devasia, S. (1999). Approximated stable inversion for nonlinear systems with nonhyperbolic internal dynamics, IEEE Trans. Automatic Control, 44:1419-1424 doi:10.1109/9.774114
[3] Devasia, S., Chen, D., Paden, B. (1996). Nonlinear inversion-based output tracking, IEEE Trans. Automatic Control. 41:930-942 doi:10.1109/9.508898
[4] Devasia, S. Paden, B. (1998). Stable inversion for nonlinear nonminimum-phase time-varying systems, IEEE Trans. Automatic Control, 43:283-288 doi:10.1109/9.661082
[5] Hunt, L., Ramakrishna, V., Meyer, G. (1998). Stable inversion and parameter variations, Systems and Control Letters, 34:203-207 doi:10.1016/S0167-6911(98)00026-7
[6] Hunt, L. R. Meyer, G. (1997). Stable inversion for nonlinear systems, Automatica, 33:1549-1554 doi:10.1016/S0005-1098(97)00064-2
[7] Isidori, A. (1995). Nonlinear control systems, 3rd ed, Springer-Verlag, London.
[8] Khalil, H. (2002). Nonlinear systems, 3rd ed, Prentice Hall, Upper Saddle River.
[9] Kreyszig, E. (1978). Introductory Functional Analysis with Applications, John Wiley and Sons, New York.
[10] Parker, T. Chua, L. (1989). Practical numerical algorithms for chaotic systems, Springer-Verlag, New York.
[11] Pavlov, A., Pogromsky, A., van de Wouw, N., Nijmeijer, H. (2004). Convergent dynamics, a tribute to Boris Pavlovich Demidovich, Systems and Control Letters. 52:257-261 doi:10.1016/j.sysconle.2004.02.003
[12] Pavlov, A., van de Wouw, N., Nijmeijer, H. (2002). Convergent systems and the output regulation problem, In Proc. of IEEE Conf. Decision and Control. pp. 2681-2686.
[13] Pavlov, A., van de Wouw, N., Nijmeijer, H. (2005). Convergent systems: analysis and design, In Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems, pp. 131-146. Springer doi:10.1007/11529798_9
[14] Pavlov, A., van de Wouw, N., Nijmeijer, H. (2005). Uniform output regulation of nonlinear systems: a convergent dynamics approach, Birkhäuser, Boston.
[15] Zeng, G. Hunt, L. (2000). Stable inversion of nonlinear discrete-time systems, IEEE Trans. Automatic Control. 45:1216-1220 doi:10.1109/9.863610

  title={{A new perspective on stable inversion of non-minimum phase nonlinear systems}},
  author={Pavlov, Alexey and Pettersen, Kristin Y.},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}