“An Overview of the Marine Systems Simulator (MSS): A Simulink Toolbox for Marine Control Systems”

Authors: Tristan Perez, Øyvind N. Smogeli, Thor I. Fossen and Asgeir J. Sørensen,
Affiliation: NTNU, Centre for Ships and Ocean Structures and NTNU
Reference: 2006, Vol 27, No 4, pp. 259-275.

Keywords: Marine system dynamics, models, simulations

Abstract: The Marine Systems Simulator (MSS) is an environment which provides the necessary resources for rapid implementation of mathematical models of marine systems with focus on control system design. The simulator targets models¡Xand provides examples ready to simulate¡Xof different floating structures and its systems performing various operations. The platform adopted for the development of MSS is Matlab/Simulink. This allows a modular simulator structure, and the possibility of distributed development. Openness and modularity of software components have been the prioritized design principles, which enables a systematic reuse of knowledge and results in efficient tools for research and education. This paper provides an overview of the structure of the MSS, its features, current accessability, and plans for future development.

PDF PDF (957 Kb)        DOI: 10.4173/mic.2006.4.4

DOI forward links to this article:
[1] Xuetao Chen and Woei Wan Tan (2013), doi:10.1016/j.oceaneng.2013.05.021
[2] Judith M. Apsley, Aurelio Gonzalez-Villasenor, Mike Barnes, Alexander C. Smith, Steve Williamson, Jeroen D. Schuddebeurs, Patrick J. Norman, Campbell D. Booth, Graeme M. Burt and J. R. McDonald (2009), doi:10.1109/TIA.2009.2013569
[3] K. Ishaque, S.S. Abdullah, S.M. Ayob and Z. Salam (2011), doi:10.1016/j.oceaneng.2010.10.017
[4] Pavan Kumar Nuthi and Kamesh Subbarao (2014), doi:10.2514/6.2014-0034
[5] Kashif Ishaque, S. S. Abdullah, S. M. Ayob and Z. Salam (2010), doi:10.1007/s10846-010-9395-x
[6] Per Ivar Barth Berntsen, Ole Morten Aamo and Bernt J. Leira (2006), doi:10.1109/CDC.2006.377085
[7] Huarong Zheng, Rudy R. Negenborn and Gabriel Lodewijks (2013), doi:10.1109/ITSC.2013.6728398
[8] R. Iza, E. Irigoyen, V. Gomez, F. Artaza and H. Etxebeste (2010), doi:10.1109/ESARS.2010.5665260
[9] Guichen Zhang and Jie Ma (2010), doi:10.1109/ICICTA.2010.762
[10] Jun Hou, Jing Sun and Heath Hofmann (2015), doi:10.1109/ACC.2015.7172116
[11] Marco Gallieri and John Ringwood (2010), doi:10.1109/ICIT.2010.5472654
[12] Feiyang Zhao, Wenming Yang, Woei Wan Tan, Wenbin Yu, Jiasheng Yang and Siaw Kiang Chou (2016), doi:10.1016/j.apenergy.2015.10.022
[13] Torstein I. Bo, Andreas R. Dahl, Tor A. Johansen, Eirik Mathiesen, Michel R. Miyazaki, Eilif Pedersen, Roger Skjetne, Asgeir J. Sorensen, Laxminarayan Thorat and Kevin K. Yum (2015), doi:10.1109/ACCESS.2015.2496122
[14] Anastasios M. Lekkas and Thor I. Fossen (2012), doi:10.3182/20120919-3-IT-2046.00068
[15] Dae Hyuk Kim and Nakwan Kim (2014), doi:10.2478/IJNAOE-2013-0166
[16] Borge Rokseth, Stian Skjong and Eilif Pedersen (2017), doi:10.1109/JOE.2016.2614584
[17] Massimo Guarnieri, Mattia Morandin, Antonio Ferrari, Pierpaolo Campostrini and Silverio Bolognani (2018), doi:10.1109/MIAS.2017.2739998
[18] Jun Hou, Jing Sun and Heath F. Hofmann (2018), doi:10.1109/JOE.2017.2674878
[19] Hanguang Zhang, Jin Bi, Jietao Li and Ke Ma (2017), doi:10.1109/ICCSNT.2017.8343687
[20] Zhengru Ren, Zhiyu Jiang, Roger Skjetne and Zhen Gao (2018), doi:10.1016/j.oceaneng.2018.05.011
[21] Sondre Sanden Tørdal and Geir Hovland (2019), doi:10.1115/1.4041643
[22] Hyondong Oh, Seungkeun Kim, Antonios Tsourdos and Al Savvaris (2019), doi:10.1007/s00773-019-00628-1
[23] Marco Gallieri (2016), doi:10.1007/978-3-319-27963-3_8
[24] Yonghui Shuai, Guoyuan Li, Xu Cheng, Robert Skulstad, Jinshan Xu, Honghai Liu and Houxiang Zhang (2019), doi:10.1016/j.oceaneng.2019.106514
[25] Luis Hernández-Morales, Yunier Valeriano-Medina, Luis Hernández-Santana and Ernesto Mesa-Suarez (2020), doi:10.1177/1475090220901431
[26] Xiaoyang Wang, Xiufen Ye and Wenzhi Liu (2020), doi:10.1109/ACCESS.2020.2996270
[27] G. Budak and S. Beji (2020), doi:10.1016/j.oceaneng.2020.108126
[28] Mathias Marley, Roger Skjetne, Morten Breivik and Caroline Fleischer (2020), doi:10.1088/1757-899X/929/1/012022
References:
[1] COUSER, P. (2000). Seakeeping analysis for preliminary design, Ausmarine 2000, Fremantle W.A., Baird Publications.
[2] DANIELSEN, A. L., KYRKJEBØ, E. PETTERSEN, K. Y. (2004). MVT: A marine visualization toolbox for MATLAB, In: IFAC Conference on Control Applications in Marine System, Ancona, Italy.
[3] FATHI, D. (2004). ShipX Vessel Responses ´VERES´, Marintek AS Trondheim. http://www.marintek.sintef.no/.
[4] FOSSEN, T. I. (1994). Guidance and Control of Ocean Marine Vehicles, John Wiley and Sons Ltd. New York.
[5] FOSSEN, T. I. (2002). Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles, Marine Cybernetics, Trondheim.
[6] FOSSEN, T. I. (2005). A nonlinear unified state-space model for ship maneuvreing and control in a seaway, In: International Journal of Bifurcation and Chaos. Vol. 15. pp. 2717-2746 doi:10.1142/S0218127405013691
[7] FOSSEN, T. I. SMOGELI, Ø. N. (2004). Nonlinear time-domain strip theory formulation for low speed manoeuvring and station-keeping, Modelling Identification and Control - MIC.
[8] GOODWIN, G. C., GRAEBE, S. SALGADO, M. (2001). Control System Design, Prentice-Hall, Inc.
[9] JOUERNEE, J. M. J. ADEGEEST, L. J. M. (2003). Theoretical Manual of Strip Theory Program SEAWAY for Windows, TU Delft, Delft University of Technology. www.ocp.tudelft.nl/mt/journee.
[10] KRISTANSEN, E. EGELAND, O. (2003). Frequency dependent added mass in models for controller design for wave motion ship damping, In: 6th IFAC Conference on Manoeuvring and Control of Marine Craft MCMC'03, Girona, Spain.
[11] KYRKJEBØ, E. PETTERSEN, K. Y. (2003). Ship replenishment using synchronization control, In: 5th IFAC Conference on Manoeuvring and Control of Marine Craft MCMC'03.
[12] NAYLOR, A.W. SELL, G. R. (1982). Linear Operator Theory in Engineering and Science, Vol. 40 of Applied Mathematical Sciences. Springer-Verlag.
[13] PEREZ, T. (2005). Ship Motion Control: Course Keeping and Roll Reduction using rudder and fins, Advances in Industrial Control. Springer-Verlag, London.
[14] PEREZ, T. BLANKE, M. (2003). DCMV a matlab/simulink toolbox for dynamics and control of marine vehicles, In: 6th IFAC Conference on Manoeuvring and Control of Marine Craft MCMC'03.
[15] SMOGELI, Ø. N., PEREZ, T., FOSSEN, T. I. SØRENSEN, A. J. (2005). The marine systems simulator state-space model representation for dynamically positioned surface vessels, In: International Maritime Association of the Mediterranean IMAM Conference, Lisbon, Portugal.
[16] SØRENSEN, A. J. (2005). Marine cybernetics, modelling and control, Lecture notes UK-05 - 76. Department of Marine Technology, NTNU, Trondheim, Norway.
[17] SØRENSEN, A. J. (2005). Structural properties in the design and operation of marine control systems, IFAC Journal on Annual Reviews in Control, Elsevier Ltd. 2.1, 125 - 149.
[18] SØRENSEN, A. J., PEDERSEN, E. SMOGELI, Ø. N. (2003). Simulation-based design and testing of dynamically positioned marine vessels, In: International Conference on Marine Simulation and Ship Maneuverability.MARSIM, Japan.
[19] WAMIT (2004). WAMIT User Manual, www.wamit.com.


BibTeX:
@article{MIC-2006-4-4,
  title={{An Overview of the Marine Systems Simulator (MSS): A Simulink Toolbox for Marine Control Systems}},
  author={Perez, Tristan and Smogeli, Øyvind N. and Fossen, Thor I. and Sørensen, Asgeir J.},
  journal={Modeling, Identification and Control},
  volume={27},
  number={4},
  pages={259--275},
  year={2006},
  doi={10.4173/mic.2006.4.4},
  publisher={Norwegian Society of Automatic Control}
};