“Solving the nonlinear Schrödinger equation using exponential integrators”

Authors: Håvard Berland, Brynjulf Owren and Bård Skaflestad,
Affiliation: NTNU
Reference: 2006, Vol 27, No 4, pp. 201-218.

Keywords: Exponential integrators, nonlinear Schro¨dinger equation, regularity requirements, stiff and non-stiff order conditions

Abstract: Using the notion of integrating factors, Lawson developed a class of numerical methods for solving stiff systems of ordinary differential equations. However, the performance of these ´Generalized Runge - Kutta processes´ was demonstrably poorer when compared to the ETD schemes of Certaine and Nørsett, recently rediscovered by Cox and Matthews. The deficit is particularly pronounced when the schemes are applied to parabolic problems. In this paper we compare a fourth order Lawson scheme and a fourth order ETD scheme due to Cox and Matthews, using the nonlinear Schro¨dinger equation as the test problem. The primary testing parameters are degree of regularity of the potential function and the initial condition, and numerical performance is heavily dependent upon these values. The Lawson and ETD schemes exhibit significant performance differences in our tests, and we present some analysis on this.

PDF PDF (220 Kb)        DOI: 10.4173/mic.2006.4.1

DOI forward links to this article:
[1] Håvard Berland, Alvaro L. Islas and Constance M. Schober (2007), doi:10.1016/j.jcp.2006.11.030
[2] Morten Dahlby and Brynjulf Owren (2009), doi:10.1051/m2an/2009022
[3] Brett N. Ryland, Robert I. Mclachlan and Jason Frank (2007), doi:10.1080/00207160701458633
[4] Mohammadreza Askaripour Lahiji and Zainal Abdul Aziz (2014), doi:10.1016/j.ieri.2014.09.086
[5] B. Cano and A. González-Pachón (2015), doi:10.1016/j.apnum.2015.01.001
[6] Gang Wu, Lu Zhang and Ting-ting Xu (2015), doi:10.1007/s10444-015-9433-0
[7] Yu-Wen Li and Xinyuan Wu (2016), doi:10.1137/15M1023257
[8] A. Q. M. Khaliq, X. Liang and K. M. Furati (2016), doi:10.1007/s11075-016-0200-1
[9] I. Alonso-Mallo, B. Cano and N. Reguera (2017), doi:10.1016/j.apnum.2017.02.010
[10] David Cohen and Guillaume Dujardin (2017), doi:10.1007/s40072-017-0098-1
[11] Xinyuan Wu and Bin Wang (2018), doi:10.1007/978-981-10-9004-2_2
[12] Mohammadreza Askaripour Lahiji and Zainal Abdul Aziz (2015), doi:10.4028/www.scientific.net/AMM.729.213
[13] R zvan tef nescu and Gabriel Dimitriu (2010), doi:10.1007/978-3-642-12535-5_74
[14] Marlis Hochbruck and Alexander Ostermann (2010), doi:10.1017/S0962492910000048
[15] Marlis Hochbruck, Jan Leibold and Alexander Ostermann (2020), doi:10.1007/s00211-020-01120-4
[16] Judit Munoz-Matute, David Pardo and Leszek Demkowicz (2020), doi:10.1016/j.jcp.2020.110016
[1] BERLAND, H., OWREN, B. SKAFLESTAD, B. (2005). B-series and order conditions for exponential integrators, SIAM J. Numer. Anal., 43 pp. 1715 - 1727 doi:10.1137/040612683
[2] BERLAND, H., SKAFLESTAD, B. WRIGHT, W. (2005). Expint - A Matlab package for exponential integrators, Tech. Rep. 4/05, Department of Mathematical Sciences, NTNU, Norway. http://www.math.ntnu.no/preprint/, To appear in ACM TOMS 2006.
[3] BRIDGES, T. J. REICH, S. (2001). Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A, 284 pp. 184 - 193 doi:10.1016/S0375-9601(01)00294-8
[4] CAZENAVE, T. (1996). An introduction to nonlinear Schrödinger equations, no, 26 in Textos de Metodos Mathemáticos. Universidade Federal do Rio de Janeiro, Instituto de Matema´tica, third ed.
[5] CERTAINE, J. (1960). The solution of ordinary differential equations with large time constants, In Mathematical methods for digital computers, Wiley, New York, pp. 128 - 132.
[6] COX, S. M. MATTHEWS, P. C. (2002). Exponential time differencing for stiff systems, J. Comput. Phys., 176, pp. 430 - 455 doi:10.1006/jcph.2002.6995
[7] EHLE, B. L. LAWSON, J. D. (1975). Generalized Runge - Kutta processes for stiff initial-value problems, J. Inst. Maths. Applics., 16, pp. 11 - 21 doi:10.1093/imamat/16.1.11
[8] HOCHBRUCK, M. OSTERMANN, A. (2005). Explicit exponential Runge - Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal., 43, pp. 1069-1090 doi:10.1137/040611434
[9] HOCHBRUCK, M., LUBICH, C. SELHOFER, H. (1998). Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput., 19, pp. 1552-1574 doi:10.1137/S1064827595295337
[10] ISLAS, A. L., KARPEEV, D. A. SCHOBER, C. M. (2001). Geometric integrators for the nonlinear Schrödinger equation, J. of Comp. Phys., 173, pp. 116 - 148 doi:10.1006/jcph.2001.6854
[11] JAHNKE, T. LUBICH, C. (2000). Error bounds for exponential operator splittings, BIT, 40, pp. 735 - 744 doi:10.1023/A:1022396519656
[12] KASSAM, A.-K. TREFETHEN, L. N. (2005). Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput., 26, pp. 1214 - 1233.electronic doi:10.1137/S1064827502410633
[13] KROGSTAD, S. (2005). Generalized integrating factor methods for stiff PDEs, J. of Comp. Phys., 203, pp. 72 - 88 doi:10.1016/j.jcp.2004.08.006
[14] LAWSON, J. D. (1967). Generalized Runge - Kutta processes for stable systems with large Lipschitz constants, SIAM J. Numer. Anal., 4, pp. 372 - 380 doi:10.1137/0704033
[15] MINCHEV, B. WRIGHT, W. M. (2005). A review of exponential integrators for semilinear problems, Tech. Rep. 2/05, Department of Mathematical Sciences, NTNU, Norway. http://www.math.ntnu.no/preprint/.
[16] NØRSETT, S. P. (1969). An A-stable modification of the Adams - Bashforth methods, In Conf. on Numerical Solution of Differential Equations.Dundee, Scotland, Springer, Berlin, pp. 214 - 219 doi:10.1007/BFb0060031
[17] OSTERMANN, A., THALHAMMER, M. WRIGHT, W. M. (2005). A class of explicit exponential general linear methods, In preparation.

  title={{Solving the nonlinear Schrödinger equation using exponential integrators}},
  author={Berland, Håvard and Owren, Brynjulf and Skaflestad, Bård},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}