“A new optimization algotithm with application to nonlinear MPC”

Authors: Frode Martinsen, Lorentz T. Biegler and Bjarne A. Foss,
Affiliation: NTNU, Department of Engineering Cybernetics and Carnegie-Mellon University
Reference: 2005, Vol 26, No 1, pp. 3-22.

Keywords: Model predictive control, optimization, SQP

Abstract: This paper investigates application of SQP optimization algorithm to nonlinear model predictive control. It considers feasible vs. infeasible path methods, sequential vs. simultaneous methods and reduced vs full space methods. A new optimization algorithm coined rFOPT which remains feasibile with respect to inequality constraints is introduced. The suitable choices between these various strategies are assessed informally through a small CSTR case study. The case study also considers the effect various discretization methods have on the optimization problem.

PDF PDF (2662 Kb)        DOI: 10.4173/mic.2005.1.1

DOI forward links to this article:
[1] Masoud Golshan, John F. MacGregor and Prashant Mhaskar (2011), doi:10.1016/j.jprocont.2011.06.007
[2] M. Diehl, R. Findeisen, F. Allgower, H.G. Bock and J. Schloder (2003), doi:10.1109/CDC.2003.1272809
[3] Xun-qiang Yin, Wen-yan Zhao, Xiao-tong Qiu and Gui-xuan Wang (2021), doi:10.1088/1755-1315/638/1/012079
[1] ASCHER, U. M., MATFHEIJ, R. M. M. RUSSELL, R. D. (1995). Numerical solution of boundary value problems for ordinary differential equations, Society for Industrial and Applied Mathematics.SIAM, Philadelphia. PA. classics in Applied Mathematics.
[2] BARCLAY, A., GILL, P. E. ROSEN, J. B. (1998). SQP methods and their application to numerical optimal control, In: Variational calculus, optimal control and applications.Trassenheide, 1996, Birkhäuser, Basel, pp. 207-222.
[3] BETTS, J. T. (2001). Practical methods for optimal control using nonlinear programming, Advances in Design and Control, Society for Industrial and Applied Mathematics.SIAM, Philadelphia, PA.
[4] BIEGLER, L. T. (2000). Efficient solution of dynamic optimization and NMPC problems, In: Nonlinear model predictive control.Ascona, 1998, Birkhäuser, Basel, pp. 219-243.
[5] BIEGLER, L. T., CERVANTES, A. M. WÄCHTER, A. (2002). Advances in simultaneous strategies for dynamic process optimization, Chem. Eng. Sri. 57(4), pp. 575-593 doi:10.1016/S0009-2509(01)00376-1
[6] BIEGLER, L. T., NOCEDAL, J. SCHMID, C. (1995). A reduced Hessian method for large-scale constrained optimization, SIAM J. Optim. .2, pp. 314-347 doi:10.1137/0805017
[7] BOCK, H. G., DIEHL, M. M., SCHLÖDER, J. P., ALLGÖWER, F., FINDEISEN, R. NAGY, Z. (2000). Real-time optimization and nonlinear predictive control of processes governed by differential-algebraic equations, In: L. T. BIEGLER, A. BRAMBILLA and C. SCALI (Eds.), Preprints: International Symposium on Advanced Control of Chemical Processes (ADCHEM 2000), Pisa, Italy, pp. 695-703.
[8] BOGGS, P. T. TOLLE, J. W. (1995). Sequential quadratic programming, In: Acta numerica, Cambridge Univ. Press, Cambridge, pp. 1-51.
[9] CERVANTES, A. M. BIEGLER, L. T. (2000). A stable elemental decomposition for dynamic process optimization, J. Comput. Appl. Math., 120(1-2), pp. 41-57, SQP-based direct discretization methods for practical optimal control problems doi:10.1016/S0377-0427(00)00302-2
[10] CHEN, H. ALLGÖWER, F. (1998). A computationally attractive nonlinear model predictive control scheme with guaranteed stability for stable systems, J. Proc. Cont., 8(5-6), pp. 475-485 doi:10.1016/S0959-1524(98)00021-3
[11] CHEN, H. ALLGÖWER, F. (1998). A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability, Automatica J. IFAC, 34(10) pp. 1205-1217 doi:10.1016/S0005-1098(98)00073-9
[12] DE OLIVEIRA, N. M. C. BIEGLER, L. T. (1995). An extension of Newton-type algorithms for nonlinear process control, Automatica J. IFAC, 31(2), pp. 281-286 doi:10.1016/0005-1098(94)00086-X
[13] DE OLIVEIRA, N. M. C. (1994). Newton-type algorithms for nonlinear constrained chemical process control, Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
[14] FINLAYSON, B. A. (1980). Nonlinear analysis in chemical engineering, Chemical engineering, McGraw-Hill, New York, NY.
[15] GILL, P. E., MURRAY, W. WRIGHT, M.H. (1981). Practical optimization, Academic Press Inc..Harcourt Brace Jovanovich Publishers, London.
[16] GRIEWANK, A. (2000). Evaluating derivatives, Vol. 19 of Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics.SIAM, Philadelphia, PA, principles and techniques of algorithmic differentiation.
[17] HOLMSTRÖM, K., GÖRAN, A. EDVALL, M.M. (2004). User´s guide for TOMLAB 4,2, Tech. rep., Tomlab Optimization, Sweden.
[18] LAWRENCE, C. T. TITS, A. L. (2001). A computationally efficient feasible sequential quadratic programming algorithm, SIAM J. Optim., 11(4), pp. 1092-1118 (electronic) doi:10.1137/S1052623498344562
[19] LI, W. C., BIEGLER, L T., ECONOMOU, C. G. MORARI M. (1990). A constrained pseudo-Newton control strategy for nonlinear systems, Computers Chem. Engng., 1.4/5, pp. 451-468.
[20] MAHEDEVAN, R., AGRAWAL, S. DOYLE, F. J. (2001). Differential flatness based nonlinear predictive control of fed-hatch bioreactors, Control Engn. Practice, 9(8), pp. 889-899 doi:10.1016/S0967-0661(01)00054-5
[21] MARTINSEN, F. (2001). The optimization algorithm rFSQP with application to nonlinear model predictive control of grate sintering, Ph.D. thesis, Norwegian University of Science and Technology, Norway.
[22] MATSUURA, T. KATO, M. (1967). Concentration stability of the isothermal reactor, Chem. Eng. Sci., 22, pp. 171-184 doi:10.1016/0009-2509(67)80009-5
[23] MAYNE., D. Q. (1997). Nonlinear model predictive control : An assessment, In: J. C. KANTOR, C. E. GARCIA and B. CARNAHAN.Eds, CPC-V: Proceedings of the Fifth International Conference on Chemical Process Control, Tahoe City, CA., 1996, AlChE symposium series; no. 316, CACHE, pp. 217-231.
[24] MAYNE, D.Q., RAWLINGS, J. B., RAO, C. V. SCOKAERT, P. (2000). Constrained model predictive control: Stability and optimality, Automatica J.IFAC, 36(6), pp. 789-814 doi:10.1016/S0005-1098(99)00214-9
[25] NOCEDAL, J. WRIGHT, S. J. (1999). Numerical optimization, Springer-Verlag, New York doi:10.1007/b98874
[26] QIN, S. J. BADGWELL, T. A. (2000). An overview of nonlinear model predictive control applications, In: F. ALLGOWER and A. ZHENG (Eds.), Nonlinear model predictive control (Ascona, 1998), Birkhauser, pp. 128-145.
[27] RAO, C.V., WRIGHT, S. J. RAWLINGS, J. B. (1998). Application of interior-point methods to model predictive control, J. Optim. Theory Appl., 9.3, pp. 723-757 doi:10.1023/A:1021711402723
[28] TENNY, M.J., WRIGHT, S. J. RAWLINGS, J. B. (2004). Nonlinear model predictive control via feasibility-perturbed sequential quadratic programming, Comp. Optim. Appl., Submitted doi:10.1023/B:COAP.0000018880.63497.eb
[29] VASSILIADIS, V. (1993). Computational solution of dynamic optimization problems with general differential-algebraic constraints, Ph.D. thesis, University of London, U.K.

  title={{A new optimization algotithm with application to nonlinear MPC}},
  author={Martinsen, Frode and Biegler, Lorentz T. and Foss, Bjarne A.},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}