“DVL Velocity Aiding in the HUGIN 1000 Integrated Inertial Navigation System”

Authors: Bjørn Jalving, Kenneth Gade, Kristian Svartveit, Are Willumsen and Robert Sørhagen,
Affiliation: Norwegian Defence Research Establishment (FFI), University Studies at Kjeller (UNIK) and Kongsberg Maritime
Reference: 2004, Vol 25, No 4, pp. 223-236.

Keywords: Autonomous underwater vehicle, aided inertial navigation, Kalman filter, Inertial measurement unit, Doppler velocity log

Abstract: The RDI WHN-600 Doppler Velocity Log (DVL) is a key navigation sensor for the HUG1N 1000 Autonomous Underwater Vehicle (AUV). HUGIN 1000 is designed for autonomous submerged operation for long periods of time. This is facilitated by a low drift velocity aided Inertial Navigation System (INS). Major factors determining the position error growth are the IMU and DVL error characteristics and the mission plan pattern_ For instance, low frequency DVL errors cause an approximately linear drift in a straight-line trajectory, while these errors tend to be cancelled out by a lawn mower pattern_ The paper focuses on the accuracy offered by the DVL. HUGIN 1000 is a permanent organic mine countermeasure (MCM) capacity on the Royal Norwegian Navy MCM vessel KNM Karmoy. HUGIN 1000 will be part of the NATO force MCMFORNORTH in fall 2004.

PDF PDF (2082 Kb)        DOI: 10.4173/mic.2004.4.2

DOI forward links to this article:
[1] Xixiang Liu, Xiaosu Xu, Yiting Liu and Lihui Wang (2014), doi:10.1155/2014/260209
[2] Kanghua Tang, Jinling Wang, Wanli Li and Wenqi Wu (2013), doi:10.3390/s131114583
[3] Li Kang, Lingyun Ye and Kaichen Song (2014), doi:10.1155/2014/593692
[4] Giancarlo Troni and Louis L. Whitcomb (2014), doi:10.1002/rob.21551
[5] Li Kang, Lingyun Ye and Kaichen Song (2014), doi:10.1587/elex.11.20140994
[6] Petter Norgren and Roger Skjetne (2014), doi:10.4173/mic.2014.4.4
[7] Pengyun Chen, Ye Li, Yumin Su, Xiaolong Chen and Yanqing Jiang (2015), doi:10.1017/S0373463315000429
[8] Oyvind Hegrenas, Einar Berglund and Oddvar Hallingstad (2008), doi:10.1109/ROBOT.2008.4543346
[9] Oyvind Hegrenaes and Einar Berglund (2009), doi:10.1109/OCEANSE.2009.5278307
[10] Xianfei Pan and Yuanxin Wu (2015), doi:10.1017/S0373463315000703
[11] Xiaosu Xu, Peijuan Li and Jian-juan Liu (2015), doi:10.1155/2015/581909
[12] Kjetil Bergh Anonsen, Oddvar Hallingstad and Ove Kent Hagen (2007), doi:10.1109/UT.2007.370773
[13] Øyvind Hegrenaes and Oddvar Hallingstad (2011), doi:10.1109/JOE.2010.2100470
[14] Giancarlo Troni, James C. Kinsey, Dana R. Yoerger and Louis L. Whitcomb (2012), doi:10.1109/ICRA.2012.6225249
[15] Giancarlo Troni and Louis L. Whitcomb (2012), doi:10.1109/AUV.2012.6380752
[16] Bo Zhao, M. Blanke and R. Skjetne (2012), doi:10.1109/ACC.2012.6315511
[17] P. Krishnamurthy and F. Khorrami (2013), doi:10.1109/ASCC.2013.6606318
[18] G. A. Ramadass, N. Vedachalam, V. Balanagajyothi, R. Ramesh and M. A. Atmanand (2013), doi:10.1109/SYMPOL.2013.6701928
[19] O T Odegaard and O P Pedersen (2010), doi:10.1109/OCEANS.2010.5664351
[20] Lv Zhaopeng, Tang Kanghua and Wu Meiping (2011), doi:10.1109/ICEMI.2011.6037829
[21] O.T. Odegaard (2004), doi:10.1109/OCEANS.2004.1406332
[22] G Troni and L L Whitcomb (2010), doi:10.1109/OCEANS.2010.5664279
[23] Giancarlo Troni and Louis L. Whitcomb (2011), doi:10.1109/IROS.2011.6094942
[24] R. Ramesh, V. Bala Naga Jyothi, N. Vedachalam, G.A. Ramadass and M.A. Atmanand (2016), doi:10.1017/S0373463315001058
[25] Itzik Klein and Roee Diamant (2015), doi:10.3390/s151026818
[26] Li Kang, Lingyun Ye, Kaichen Song and Yang Zhou (2014), doi:10.3390/s141018075
[27] Li-Ye Zhao, Xian-Jun Liu, Lei Wang, Yan-Hua Zhu and Xi-Xiang Liu (2016), doi:10.3390/app6030079
[28] M. Romanovas, L. Lanca and R. Ziebold (2015), doi:10.1109/InertialSensors.2015.7314276
[29] Michailas Romanovas, Ralf Ziebold and Luis Lanca (2015), doi:10.1109/IAIN.2015.7352241
[30] Yanshun Zhang, Yajing Guo, Tao Yang, Chunyu Li and Zhanqing Wang (2016), doi:10.1088/0957-0233/27/6/065003
[31] Rodrigo Telles da Silva Vale, Ettore Apolonio de Barros and Thiago de Castro Martins (2013), doi:10.3182/20130918-4-JP-3022.00068
[32] Oyvind Hegrenaes, Audun Ramstad, Torstein Pedersen and David Velasco (2016), doi:10.1109/AUV.2016.7778694
[33] Asaf Tal, Itzik Klein and Reuven Katz (2017), doi:10.3390/s17020415
[34] Haijian Xue, Xiaosong Guo, Zhaofa Zhou and Kunming Wang (2017), doi:10.1017/S0373463317000340
[35] Peijia Liu, Bo Wang, Zhihong Deng and Mengyin Fu (2017), doi:10.1109/JSEN.2017.2712282
[36] Yixian Zhu, Xianghong Cheng, Jie Hu, Ling Zhou and Jinbo Fu (2017), doi:10.3390/app7080759
[37] P. J. Liu, B. Wang, Z. H. Deng, X. Xiao and S. T. Wang (2017), doi:10.23919/ICINS.2017.7995608
[38] Peijia Liu, Bo Wang, Zhihong Deng and Mengyin Fu (2018), doi:10.1109/JSEN.2018.2800165
[39] Juan Francisco Fuentes-Perez, Christian Meurer, Jeffrey Andrew Tuhtan and Maarja Kruusmaa (2018), doi:10.1109/JOE.2017.2767786
[40] Ruonan Wu, Qiuping Wu, Fengtian Han, Rong Zhang, Peida Hu and Haixia Li (2018), doi:10.3390/s18051538
[41] Zhe Fan, Shuling Hu, Chunxi Zhang, Yanju Nie and Jun Li (2015), doi:10.1117/1.OE.54.10.104107
[42] Alper Bereketli, Muharrem Tümçak r and Burcu Yeni (2018), doi:10.1016/j.jnca.2018.10.014
[43] Wan Li Li and Liang Qing Lu (2012), doi:10.4028/www.scientific.net/AMR.591-593.1178
[44] Ali Karmozdi, Mojtaba Hashemi and Hassan Salarieh (2018), doi:10.1002/navi.271
[45] Jianhua Bao, Daoliang Li, Xi Qiao and Thomas Rauschenbach (2019), doi:10.1016/j.inpa.2019.04.003
[46] Florian Nicolas, Andreas Arnold-Bos, Isabelle Quidu and Benoit Zerr (2019), doi:10.1109/OCEANSE.2019.8867211
[47] Peijia Liu, Shiping Zhao, Liping Qing, Yong Ma, Bingiu Lu and Dongdong Hou (2019), doi:10.23919/ChiCC.2019.8865920
[48] Xiaozhen Yan, Yipeng Yang, Qinghua Luo, Yunsai Chen and Cong Hu (2019), doi:10.3390/s19204576
[49] Taesuk Yoo, Moonhwan Kim, Seonil Yoon and Daejoong Kim (2020), doi:10.1155/2020/5324349
[50] Tao Fang, Weiquan Huang, Alan F Lynch and Zongyi Wang (2020), doi:10.1088/1361-6501/ab6674
[51] Christian Meurer, Juan Francisco Fuentes-Perez, Kordula Schwarzwalder, Martin Ludvigsen, Asgeir Johan Sorensen and Maarja Kruusmaa (2020), doi:10.1109/LRA.2020.2976318
[52] Yiqing Yao, Xiaosu Xu, Yongyun Zhu and Xiang Xu (2020), doi:10.1016/j.isatra.2020.05.033
[53] Karolina Zwolak, Rochelle Wigley, Aileen Bohan, Yulia Zarayskaya, Evgenia Bazhenova, Wetherbee Dorshow, Masanao Sumiyoshi, Seeboruth Sattiabaruth, Jaya Roperez, Alison Proctor, Craig Wallace, Hadar Sa (2020), doi:10.3390/rs12081344
[54] Oystein Sture, Petter Norgren and Martin Ludvigsen (2020), doi:10.1109/ACCESS.2020.3004439
[55] Xiaoshuang Ma, Xixiang Liu, Chenlong Li, Jianwei Liu and Xiaoqiang Wu (2020), doi:10.1063/5.0007538
[56] Christian Meurer, Juan Francisco Fuentes-Perez, Narcis Palomeras, Marc Carreras and Maarja Kruusmaa (2020), doi:10.1109/JOE.2019.2907822
[57] Jingyang Liu, Bo Wang and Zhihong Deng (2019), doi:10.1109/IBCAST.2019.8667235
[58] Yipeng Yang, Xiaozhen Yan and Qinghua Luo (2019), doi:10.1109/SmartIoT.2019.00047
[59] Nicholas R. Rypkema and Henrik Schmidt (2019), doi:10.1109/IROS40897.2019.8967800
[60] Zhang Lu, Wu Wenqi and Guo Yan (2018), doi:10.1109/GNCC42960.2018.9018729
[61] Yiqing Yao, Min Zhong and Xiaosu Xu (2020), doi:10.1109/ACCESS.2020.3019697
[62] Yiqing Yao, Xiaosu Xu, Lanhua Hou, Kai Deng and Xiang Xu (2020), doi:10.1109/TVT.2020.3008755
[63] Youlin Wu, Xingshu Wang, Yingwei Zhao, Yujing Tang, Dong Liu, Xiangang Luo, Yadong Jiang and Jin Lu (2020), doi:10.1117/12.2580235
[64] Simon Watson, Daniel A. Duecker and Keir Groves (2020), doi:10.3390/s20216203
[65] Zhi Li, Yilin Wang, Wenvu Yang and Yunfang Ji (2020), doi:10.1109/ICUS50048.2020.9274926
[66] Changhui Song (2021), doi:10.1007/978-981-10-6963-5_293-1
[67] Jiaqiang Li, Huang Hai and Jiyong Li (2022), doi:10.1007/978-981-15-8155-7_265
[68] Di Wang, Xiaosu Xu, Yang Yang and Tao Zhang (2021), doi:10.1109/TVT.2021.3059755
[69] Alan J. Hunter, Warren A. Connors and Samantha Dugelay (2018), doi:10.1109/JOE.2017.2767798
[70] Jin-Kyu Choi, Takashi Yokobiki and Katsuyoshi Kawaguchi (2018), doi:10.1109/JOE.2017.2735598
[71] Jose Melo (2020), doi:10.1109/IEEECONF38699.2020.9389463
[72] Byeongjin Kim, Jason Kim, Hyeonwoo Cho, Jinwhan Kim and Son-Cheol Yu (2020), doi:10.1109/JSEN.2019.2946587
[73] Kaidi Jin, Hongzhou Chai, Chuhan Su and Minzhi Xiang (2022), doi:10.1080/01490419.2022.2040662
[74] Ramadass Gidugu Ananda, Bala Naga Jyothi Vandavasi, Ramesh Raju, Vedachalam Narayanaswamy, Ramesh Sethuraman and Atmanand Malayath Aravindakshan (2021), doi:10.23919/OCEANS44145.2021.9705859
[75] Changhui Song (2022), doi:10.1007/978-981-10-6946-8_293
[76] Yiqing Yao, Xiang Xu, Xiaosu Xu and Tao Zhang (2022), doi:10.1109/JSEN.2022.3176472
[77] Marc A. Pinto and Laurent Verrier (2022), doi:10.1109/JOE.2021.3130662
[78] Yiqing Yao, Xiang Xu, Xiaosu Xu and Itzik Klein (2023), doi:10.1109/TVT.2022.3204651
[79] Bingbing Zhang, Daxiong Ji, Shuo Liu, Xinke Zhu and Wen Xu (2023), doi:10.1016/j.oceaneng.2023.113861
[80] Adriano Frutuoso, Felipe O. Silva and Ettore A. de Barros (2023), doi:10.1016/j.oceaneng.2023.114991
[81] Thor I. Fossen (2023), doi:10.1016/j.conengprac.2023.105603
[82] Yingwei Zhao, Shiqiao Qin, Xingshu Wang, Jiaxing Zheng and Lin Wang (2023), doi:10.23919/ICINS51816.2023.10168488
[83] Yiqing Yao, Yilei Shen, Xiang Xu, Kai Deng and Xiaosu Xu (2023), doi:10.1109/JSEN.2023.3318561
[84] Jorge G. Jimenez, Matthew J. Bays, Daniel J. Stilwell, Harun Yetkin and Mingyu Kim (2023), doi:10.23919/OCEANS52994.2023.10337030
[85] QinYuan He, HuaPeng Yu and YuChen Fang (2023), doi:10.1134/S2075108723030070
[86] Qiuying Wang, Muchun Cai, Zheng Guo and Wenhao Zhou (2024), doi:10.1016/j.measurement.2024.114462
References:
[1] CHANCE, T.C., KLEINER, A.A. NORTHCUTT, J.G. (2000). The HUGIN 3000 AUV, Sea Technology, 4.12, pp. 10-14.
[2] FALMOUTH SCIENTIFIC (2004). ´2´ Micro CTD Specification Sheet, wwvv.falmouth.com.
[3] GADE, K. (2003). NavLab - Overview and User Guide, FFI/Report 2003/02128, Norwegian Defence Research Establishment.
[4] GEORGE, R.A., SHUY, J. CAUQUIL, E. (2003). Deepwater AUV Logs 25,000 Kilometers Under the Sea, Sea Technology, 4.12, pp. 10-15.
[5] HAGEN, P. E., STØRKERSEN, N., VESTGÅRD, K. KARTVEDT, P. (2003). The HUGIN 1000 Autonomous Underwater Vehicle for Military Applications, Proceedings from Oceans 2003, San Diego, CA, USA.
[6] JALVING, B., BOVIO, E. GADE, K. (2003). Integrated Inertial Navigation Systems for AUVs for REA Applications, NATO Underwater Research Center Conference Proceedings from MREP 2003, NATO Underwater Research Center May 12-15, La Spezia, Italy.
[7] JALVING, B., GADE, K., HAGEN, O.K. VESTGÅRD, K. (2003). A Toolbox of Aiding Techniques for the HUGIN AUV Integrated Inertial Navigation System, Proceedings from Oceans 2003, September 23-25, San Diego, CA, USA.
[8] LESTER, G. (2001). Email to Bjorn Jalving on RDI DVL error budget, 21 June 2001.
[9] RD INSTRUMENTS (1996). Acoustic Doppler Current Profiler, Principles of operation, A practical primer, San Diego, CA, USA.
[10] RD INSTRUMENTS (2003). Workhorse Navigator Doppler Velocity Log, DVL. http://www.dvlnav.com/pdfs/navbro.pdf.
[11] VESTGÅRD, K., HANSEN, R., JALVING, B. PEDERSEN, O.A (2001). The HUGIN 3000 Survey AUV, ISOPE-2001, Stavanger, Norway.


BibTeX:
@article{MIC-2004-4-2,
  title={{DVL Velocity Aiding in the HUGIN 1000 Integrated Inertial Navigation System}},
  author={Jalving, Bjørn and Gade, Kenneth and Svartveit, Kristian and Willumsen, Are and Sørhagen, Robert},
  journal={Modeling, Identification and Control},
  volume={25},
  number={4},
  pages={223--236},
  year={2004},
  doi={10.4173/mic.2004.4.2},
  publisher={Norwegian Society of Automatic Control}
};