“A Toolbox of Aiding Techniques for the HUGIN AUV Integrated Inertial Navigation System”

Authors: Bjørn Jalving, Kenneth Gade, Ove K. Hagen and Karsten Vestgård,
Affiliation: Norwegian Defence Research Establishment (FFI) and Kongsberg Maritime
Reference: 2004, Vol 25, No 3, pp. 173-190.

Keywords: Autonomous underwater vehicle, aided inertial navigation, Kalman filter, Doppler velocity log, synthetic aperture sonar, GPS. USBL, transponder navigation, terrain navigation smoothing

Abstract: Modern AUV designs must handle submerged autonomous operation for long periods of time. The state of the art solution embedded in the HUGIN AUVs is a Doppler Velocity Log (DVL) aided Inertial Navigation System (INS) that can integrate various forms of position measurement updates. In autonomous operations, position updates are only available in limited periods of time or space, thus the core velocity aided inertial navigation system must exhibit high accuracy However, position uncertainty of a DVL aided inertial navigation system will eventually drift off, compromising either mission operation or requirements for accurate positioning of payload data. To meet the requirements for a range of military and civilian AUV applications, the HUGIN vehicles come with a flexible and powerful set of navigation techniques. Methods for position updates include GPS surface fix, DGPS-USBL, Underwater Transponder Positioning (UTP) and bathymetric terrain navigation. Based on synthetic aperture sonar technology, a potentially revolutionary accurate velocity measurement is under development. HUGIN also comes with a navigation post-processing system (NavLab), which can be applied to increase navigational integrity and maximize position accuracy.

PDF PDF (2553 Kb)        DOI: 10.4173/mic.2004.3.3

DOI forward links to this article:
[1] Kenneth Gade (2010), doi:10.1017/S0373463309990415
[2] James C. Kinsey and Louis L. Whitcomb (2007), doi:10.1109/JOE.2007.893686
[3] Xixiang Liu, Xiaosu Xu, Yiting Liu and Lihui Wang (2014), doi:10.1155/2014/260209
[4] Kanghua Tang, Jinling Wang, Wanli Li and Wenqi Wu (2013), doi:10.3390/s131114583
[5] Ngoc-Huy Tran, Myung-Man Woo, Hyeung-sik Choi and Joon-Young Kim (2012), doi:10.1109/OCEANS-Yeosu.2012.6263382
[6] T. Hyakudome, H. Yoshida, S. Ishibashi, H. Ochi, T. Sawa, Y. Nakano, Y. Watanabe, T. Nakatani, M. Sugesawa, Y. Ohta, K. Watanabe, S. Oomika, Y. Nanbu and M. M. Komuku (2012), doi:10.1109/OCEANS.2012.6404892
[7] Giancarlo Troni, Christopher J. McFarland, Kirk A. Nichols and Louis L. Whitcomb (2011), doi:10.1109/ICRA.2011.5980488
[8] Tadahiro Hyakudome, Hiroshi Yoshida, Takeshi Nakatani, Yutaka Ohta, Toshihiro Tani, Koki Sugihara, Takuya Moriga, Takashi Iwamoto, Yoshinori Kawaharazaki, Tomomasa Oda and Yasuhiro Fujita (2013), doi:10.1109/OCEANS-Bergen.2013.6608025
[9] Kjell Magne Fauske, Fredrik Gustafsson and Oyvind Hegrenaes (2007), doi:10.1109/ICIF.2007.4408044
[10] Deborah K. Meduna, Stephen M. Rock and Robert S. McEwen (2010), doi:10.1109/AUV.2010.5779659
[11] Li-Ye Zhao, Xian-Jun Liu, Lei Wang, Yan-Hua Zhu and Xi-Xiang Liu (2016), doi:10.3390/app6030079
[12] Xixiang Liu, Jian Sima, Yongjiang Huang, Xianjun Liu and Pan Zhang (2016), doi:10.1155/2016/3528146
[13] Øyvind Ødegård, Asgeir J. Sørensen, Roy E. Hansen and Martin Ludvigsen (2016), doi:10.1016/j.ifacol.2016.10.453
[14] Tadahiro Hyakudome, Takeshi Nakatani, Hiroshi Yoshida, Toshihiro Tani, Hideki Ito and Koki Sugihara (2016), doi:10.1109/AUV.2016.7778666
[15] K. G. Kebkal and A. I. Mashoshin (2017), doi:10.1134/S2075108717010059
[16] Peijia Liu, Bo Wang, Zhihong Deng and Mengyin Fu (2017), doi:10.1109/JSEN.2017.2712282
[17] Peijia Liu, Bo Wang, Zhihong Deng and Mengyin Fu (2018), doi:10.1109/JSEN.2018.2800165
[18] Jianhua Bao, Daoliang Li, Xi Qiao and Thomas Rauschenbach (2019), doi:10.1016/j.inpa.2019.04.003
[19] Martin S. Wiig, Kristin Y. Pettersen and Thomas R. Krogstad (2020), doi:10.1002/rob.21948
[20] Jingyang Liu, Bo Wang and Zhihong Deng (2019), doi:10.1109/IBCAST.2019.8667235
[21] Tadahiro Hyakudome, Toshihiro Tani, Hideki Ito and Koki Sugihara (2018), doi:10.1109/OCEANSKOBE.2018.8559227
[22] Petter Norgren, Tore Mo-Bjorkelund, Kenneth Gade, Oyvind Hegrenas and Martin Ludvigsen (2020), doi:10.1109/AUV50043.2020.9267889
[23] Tao Zhang, Jian Wang, Liang Zhang and Lin Guo (2021), doi:10.1109/TVT.2021.3102085
[24] Yingqiang Wang, S.H. Huang, Zhikun Wang, Ruoyu Hu, Mingyue Feng, Peizhou Du, Wencheng Yang and Ying Chen (2022), doi:10.1016/j.oceaneng.2022.110812
[25] Maricruz Fun Sang Cepeda, Marcos de Souza Freitas Machado, Fabricio Hudson Sousa Barbosa, Douglas Santana Souza Moreira, Maria Jose Legaz Almansa, Marcelo Igor Lourenco de Souza and Jean-David Caprace (2023), doi:10.3390/jmse11112172
[26] Jian Wang, Tao Zhang, Bonan Jin, Yongyun Zhu and Jinwu Tong (2020), doi:10.1109/JSEN.2020.2970766
References:
[1] BERGMAN, N. JUNG, L. GUSTAFSSON, F. (1999). Terrain navigation using Bayesian statistics, IEEE Control Systems Magazine, 1.3, pp. 33-40 doi:10.1109/37.768538
[2] CHANCE, T.C., KLEINER, A. A. NORTHCUTT. J.G. (2000). The HUGIN 3000 AUV - Sea Technology, 4.12, pp. 10-14.
[3] GADE, K. (2003). NavLab User Guide, FFI/Report 2003/02128, Norwegian Defence Research Establishment.
[4] GADE, K. (2004). NavLab, a Generic Simulation and Post-processing Tool for Navigation, Paper to be published in 2004/2005.
[5] GOLDEN, J. P. (1980). Terrain contour matching ´TERCOM´: a cruise missile guidance aid, Image Processing for Missile Guidance, 238, pp. 10-18.
[6] HAGEN, O.K. HAGEN, P.E. (2000). Terrain referenced integrated navigation systems for underwater vehicles, SACLANTCEN conference proceedings CP-46, NATO SACLANT Undersea Research Centre.
[7] HAGEN, P.E., STØRKERSEN, N., VESTGÅRD, K., KARTVEDT, P. STEN, G. (2003). Operational military use of the HUGIN AUV in Norway, Proceedings from UDT Europe 2003, Malmö, Sweden.
[8] HAGEN, P. E., STØRKERSEN, N., VESTGÅRD, K. KARTVEDT, P. (2003). The HUGIN 1000 Autonomous Underwater Vehicle for Military Applications, Proceedings from Oceans 2003, San Diego, CA, USA.
[9] JALVING, B., BOVIO, E. GADE, K. (2003). Integrated inertial navigation systems for AUVs for REA applications, SACLANTCEN conference proceedings from MREP 2003, NATO SACLANT Undersea Research Centre.
[10] JALVING, B., VESTGÅRD, K. STØRKERSEN, N. (2003). Detailed seabed surveys with AUVs, In Technology and Applications of Autonomous Underwater Vehicles. Edited by Gwyn Griffiths. Taylor and& Francis, London and New York, pp. 179-201.
[11] RD INSTRUMENTS (2003). Workhorse Navigator Doppler Velocity Log ´DVL´, http://www.dvlnav.com/pdfs/navbro.pdf.
[12] VESTGÅRD, K., HANSEN, R., JALVING, B. PEDERSEN, O.A. (2001). The HUGIN 3000 Survey AUV, ISOPE-2001, Stavanger, Norway.


BibTeX:
@article{MIC-2004-3-3,
  title={{A Toolbox of Aiding Techniques for the HUGIN AUV Integrated Inertial Navigation System}},
  author={Jalving, Bjørn and Gade, Kenneth and Hagen, Ove K. and Vestgård, Karsten},
  journal={Modeling, Identification and Control},
  volume={25},
  number={3},
  pages={173--190},
  year={2004},
  doi={10.4173/mic.2004.3.3},
  publisher={Norwegian Society of Automatic Control}
};