“Control of a gravity gradient stabilised satellite using fuzzy logic”

Authors: Aage Skullestad, Kjetil Olsen, Stein Rennehvammen and Håvard Fløystad,
Affiliation: Kongsberg Defence and Aerospace and Buskerud University College
Reference: 2001, Vol 22, No 3, pp. 141-152.

Keywords: 3-axes stabilisation, satellite, Fuzzy control, simulation

Abstract: This paper describes attitude control of a small gravity gradient stabilised satellite. A gravity gradient stabilised satellite has limited stability and pointing capabilities, and magnetic coils are added in order to improve the accuracy of the attitude control. The magnetic coils are controlled using a fuzzy logic controller, based on a combination of membership functions and rules. The control of the pitch axis is separated from the roll and azimuth axes and excellent pitch angle accuracy is achieved. The roll and azimuth axes are controlled using a common magnetic coil, that has a non-linear and time-varying torque characteristic and, therefore, accurate roll and azimuth angular control become much more difficult to achieve. However, combining one roll controller and two azimuth controllers result in an acceptable roll and azimuth angular accuracy after a few orbital periods.

PDF PDF (1228 Kb)        DOI: 10.4173/mic.2001.3.2

DOI forward links to this article:
[1] Radisa Jovanovic and Aleksandra Sretenovic (2015), doi:10.4173/mic.2015.2.4
[2] Zaiyang Jiang, Siyue Sun, Wanying Liu, Guang Liang and Huawang Li (2019), doi:10.1007/978-981-13-6264-4_97
[3] Pedro A. Capo-Lugo and John Rakoczy (2019), doi:10.1016/j.actaastro.2019.06.014
[1] AASTRÖM, K.I. WITTENMARK, B. (1984). Computer Controlled Systems, Prentice Hall, Englewood Cliffs, N.J.
[2] BAK, T., WISNIEWSKI, R. BLANKE, M. (1996). Autonomuous Attitude Determination and Control System for the Ørsted Satellite, In proc.: IEEE Aerospace Application Conference.
[3] BYRNES, C.I. ISIDORI, A. (1991). On the Attitude Stabilization of Rigid Spacecraft, Automatica; Vol. 27, No. 1, pp. 87-95 doi:10.1016/0005-1098(91)90008-P
[4] BRYSON, A.E. (1994). Control of Spacecraft and Aircraft, Princeton University Press, New Jersey.
[5] CAVALLO, A,, DE MARIA, G., FERRARA, F. NISTRI, P. (1993). A Sliding Manifold Approach to Satellite Attitude Control, In proc 12th World Congress IFAC, Sydney.
[6] GREEN, M. LIMEBEER, D. J. N. (1995). Linear Robust Control, Prentice Hall, Englewood Cliffs, N.J.
[7] HUGHES, P.C. (1986). Spacecraft dynamics, John Wiley and Sons, Inc.
[8] KANE, T.K, LIKNIS, P.W. LEVINSON, D.A. (1983). Spacecraft Dynamics, McGraw-Hill, Inc.
[9] KAPLAN, M.H. (1976). Modern Spacecraft Dynamics and Control, John Wiley, New York.
[10] KYRKJEBØ, E. (2000). Satellite Attitude Determination, M.Sc. Thesis, NTNU.
[11] MUSSER, K.L. EBERT, W.L. (1989). Autonomous Spacecraft Attitude Control using Magnetic Torquing Only, In proc.: Flight Mechanics Estimation Theory Symposium, NASA.
[12] NARHEIM, B.T. SVENES, K.R. (1994). Norwegian Ionospheric Small Satellite Experiment, NISSE. Phase-A Study Report.
[13] PASSINO, K.M. YUKOVICH, S. (1998). Fuzzy Control, Addison-Wesley.
[14] RAO, S. (1990). Mechanical Vibrations, Addison Wesley.
[15] SKOGESTAD, S. POSTLETHWAITE, I. (1996). Multivariable Feedback Control Analysis and Design, Wiley.
[16] SKULLESTAD, Å. (1995). Identification of vibration parameters in a space structure, PhD Thesis University of Oslo.
[17] SKULLESTAD, Å. (1999). Modelling and Control of a Gravity Gradient Stabilised Satellite, Modeling, Identification and Control, Vol 20, No. 1 doi:10.4173/mic.1999.1.1
[18] WISNIEWSKI, R. (1996). Satellite Attitude Control Using Only Electromagnetic Actuation, PhD. Thesis. University of Aalborg.
[19] ZADEH, L. A. (1965). Fuzzy sets, Informant. Control. 8.

  title={{Control of a gravity gradient stabilised satellite using fuzzy logic}},
  author={Skullestad, Aage and Olsen, Kjetil and Rennehvammen, Stein and Fløystad, Håvard},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}