“A didactically motivated PLS prediction algorithm”

Authors: Rolf Ergon and Kim H. Esbensen,
Affiliation: Telemark University College
Reference: 2001, Vol 22, No 3, pp. 131-139.

Keywords: Latent variables models, PLS prediction, Kalman filtering

Abstract: The intention of this paper is to develop an easily understood PLS prediction algorithm, especially for the control community. The algorithm is based on an explicit latent variables model, and is otherwise a combination of the previously published Martens and Helland algorithms. A didactic connection to Kalman filtering theory is provided for a methodological overview.

PDF PDF (900 Kb)        DOI: 10.4173/mic.2001.3.1

DOI forward links to this article:
[1] R. Ergon (2009), doi:10.1002/cem.1180
[2] Rolf Ergon, Maths Halstensen and Kim H. Esbensen (2011), doi:10.1002/cem.1356
[3] Rolf Ergon (2013), doi:10.1002/9781118434635.ch08
[4] Rolf Ergon (2013), doi:10.1002/9781118434635.ch8
[5] Rolf Ergon and Maths Halstensen (2001), doi:10.4173/mic.2001.2.2
[1] BELSLEY, D.A. (1991). Conditioning Diagnostics: Collinearity and Weak Data in Regression, Wiley New York.
[2] BERNTSEN, H. (1988). Utvidet Kalmanfilter og multivariabel kalibrering, Report STF48 A88019, SINTEF, Trondheim, Norway.
[3] DI RUSCIO, D. (2000). A weighted view on the partial least squares algorithm, Automatica 36, pp. 831-850 doi:10.1016/S0005-1098(99)00210-1
[4] ERGON, R. (1998). Dynamic system multivariate calibration by system identification methods, Modeling, Identification and Control, Vol. 19, No. 2, pp. 77-97 doi:10.4173/mic.1998.2.2
[5] ERGON, R. (1999). Dynamic System Multivariate Calibration for Optimal Primary Output Estimation, Ph.D. thesis, The Norwegian University of Science and Technology and Telemark University College, Norway.
[6] ERGON, R. ESBENSEN, K.H. (2001). Static PLSR optimization based on Kalman filtering theory and noise covariance estimation, 7th Scandinavian Symposium on Chemometrics, Copenhagen.
[7] ESBENSEN, K. (2000). Multivariate Data Analysis in practice, Camo ASA, Trondheim, Norway.
[8] GREWAL, M.S. ANDREWS, A.P. (1993). Kalman Filtering: Theory and Practice, Prentice Hall, New Jersey.
[9] ESBENSEN, K. HUANG, J. (2001). Principles of proper validation, In preparation for Journal of Chemometrics.
[10] HELLAND, I.S. (1988). On the structure of partial least squares regression, Communications in Statistics, 1.2, pp. 581-607.
[11] HØSKULDSSON, A. (1996). Prediction Methods in Science and Technology, Thor Publishing, Copenhagen.
[12] JOHNSON, R.A. WICHERN, D.W. (1992). Applied Multivariate Statistical Analysis, Prentice Hall, New Jersey.
[13] MARTENS, H. NÆS, T. (1989). Multivariate Calibration, John Wiley and Sons, New York.
[14] NORRIS, K. H. (1993). Extracting information from spectrophotometric curves, Predicting chemical composition from visible and near-infrared spectra, Proc. IUFost Symp. Food Research and Data Analysis, Sept. 1982, Oslo, Norway.MARTENS and RUSSWORM, eds., Applied Science Publ., 95-113.
[15] TICHONOV, A.N. ARSENIN, V.Y. (1977). Solutions of Ill-Posed Problems, V. H. Winston and Sons, Washington, DC.

  title={{A didactically motivated PLS prediction algorithm}},
  author={Ergon, Rolf and Esbensen, Kim H.},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}