“Constrained quadratic stabilization of discrete-time uncertain nonlinear multi-model systems using piecewise affine state-feedback”

Authors: Olav Slupphaug and Bjarne A. Foss,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1999, Vol 20, No 3, pp. 137-164.

Keywords: Constrained control, nonlinear control, robust control, multi-model systems, BMI control, MPC, receeding horizon control, moving horizon control

Abstract: In this paper a method for nonlinear robust stabilization based on solving a bilinear matrix inequality (BMI) feasibility problem is developed. Robustness against model uncertainty is handled. In different non-overlapping regions of the state-space called clusters the plant is assumed to be an element in a polytope which vertices (local models) are affine systems. In the clusters containing the origin in their closure, the local models are restricted to be linear systems. The clusters cover the region of interest in the state-space. An affine state-feedback is associated with each cluster. By utilizing the affinity of the local models and the state-feedback, a set of linear matrix inequalities (LMIs) combined with a single nonconvex BMI are obtained which, if feasible, guarantee quadratic stability of the origin of the closed-loop. The feasibility problem is attacked by a branch-and-bound based global approach. If the feasibility check is successful, the Liapunov matrix and the piecewise affine state-feedback are given directly by the feasible solution. Control constraints are shown to be representable by LMIs or BMIs, and an application of the control design method to robustify constrained nonlinear model predictive control is presented. Also, the control design method is applied to a simple example.

PDF PDF (3710 Kb)        DOI: 10.4173/mic.1999.3.1

DOI forward links to this article:
[1] O. Slupphaug and B.A. Foss (1998), doi:10.1109/ACC.1998.707294
[2] Olav Slupphaug and Bjarne A. Foss (2000), doi:10.1016/S0959-1524(99)00025-6
[3] Guanghui Hao, Fan Zhou, Jun Zhao, Zhongyang Han and Wei Wang (2021), doi:10.1109/CAC53003.2021.9728228
[4] S. Palomino Bean, D.F. Coutinho, A. Trofino and J.E. R. Cury (2003), doi:10.1002/rnc.725
[1] ALUR, R., HENZINGER, T. A. SONTAG, E.D. (1996). Hybrid Systems III: Verification and Control, Number 1066 in LNCS, Springer.
[2] APKARIAN, P., BECKER, G., GAHINET, P. KAJIWARA, H. (1996). LMI Techniques in Control Engineering from Theory to Practice, Workshop Notes CDC 1996, Kobe, Japan. Copies can be obtained on request to the authors.
[3] BADGWELL, T.A. (1997). A Robust Model Predictive Control Algorithm for Stable Nonlinear Plants, Preprint, IFAC ADCHEM ´97, Banff, Canada, pp. 477-481.
[4] BOYD, S., EL GHAOUI, L., PERON, E. BALAKRISHNAN, V. (1994). Linear Matrix Inequalities in System and Control Theory, Number 15 in SIAM Studies in Applied Mathematics, SIAM.
[5] CHEN, H., SCHERER, C.W. ALLGÖWER, F. (1997). A Game Theoretic Approach to Nonlinear Robust Receding Horizon Control of Constrained Systems, Proceedings of ACC´97, Albuquerque, NM, USA.
[6] COLLINS, JR., E.G., SADHUKKAN, D. WATSON, L.T. (1997). Robust Controller Synthesis via Nonlinear Matrix Inequalities, Proceedings of ACC´97, Albuquerque, NM, USA.
[7] CORLESS, M. (1994). Robust Stability Analysis and Controller Design with Quadratic Lyapunov Functions, In A. S. I. Zinober.cd., Variable Structure and Lyapunov, Control, number 193 in Lecture Notes in Control and Information Sciences, Springer-Verlag, London, chapter 9.
[8] DAHLEH, M. A. DIAZ-BOBILLO, I.J. (1995). Control of Uncertain Systems: A Linear Programming Approach, Prentice Hall, Englewood Cliffs, New Jersey 07632.
[9] DUSSY, S. EL GHAOUI, L. (1997). Multiobjective Bounded Control of Uncertain Nonlinear Systems: An Inverted Pendulum Example, Proceedings of ECC 97, Brussels, Belgium.
[10] EL GHAOUI, L. BALAKRISHNAN, V. (1994). Synthesis of Fixed-Structure Controllers via Numerical Optimization, Proceedings of the 33rd CDC, Lake Buena Vista, FL, USA, pp. 2678-2683.
[11] EL GHAOUI, L., OUSTRY, F. AITRAMI, M. (1997). A Cone Complementary Linearization Algorithm for Static Output-Feedback and Related Problems, IEEE Transactions on Automatic Control, 4.8, 1171-1176 doi:10.1109/9.618250
[12] GAHINET, P., NEMIROVSKI, A., LAUB, A.J. CHILALI, M. (1995). LMI Control Toolbox, The Math Works Inc.
[13] GOH, K. C., SAFONOV, M. G. LY, J.H. (1996). Robust Synthesis via Bilinear Matrix Inequalities, International Journal of Robust and Nonlinear Control, .9-10, 1079-1095.
[14] GOH, K. C., SAFONOV, M.G. PAPAVASSILOPOULOS, G.P. (1994). A Global Optimization Approach for the BMI Problem, Proceedings of the 33rd CDC, Lake Buena Vista, FL, USA, pp. 2009-2014.
[15] GOH, K.C., TRUAN,L, SAFONOV, M.G., PAPAVASSILOPOULOS, G.P. LY, J.H. (1994). Biaffine Matrix Inequality Properties and Computational Methods, A shorter version appeared in American Control Conference 1994, Baltimore, MD, USA, pp. 850-855. http:/, www.ps.ic.ac.uk/~kcgoh/papers.html.
[16] HASSIBI, A. BOYD, S. (1998). Quadratic Stabilization and Control of Piecewise Linear Systems, Proceedings American Control Conference, Philadelphia, PA, USA.
[17] HORN, R. A. JOHNSON, C.R. (1992). Matrix Analysis, Cambridge University Press. ISBN 0-521-38632-2.
[18] JOHANSEN, T.A. (1996). Orbit v1,5 user´s guide and reference, SINTEF report STF72 A96312, SINTEF Automatic Control, N-7034 Trondheim, Norway.
[19] JOHANSEN, T.A. FOSS, B. A. (1993). Constructing NARMAX models using ARMAX models, Int. J. Control, 58, 1125-1153 doi:10.1080/00207179308923046
[20] JOHANSEN, T.A. FOSS, B. A. (1997). Operating regime based process modelling and identification, Computers and Chemical Engineering, 21, 159-176 doi:10.1016/0098-1354(95)00260-X
[21] JOHANSEN, T.A. FOSS, B. A. (1997). ORBIT - operating regime based modeling and identification toolkit, Preprints IFAC Symposium on System Identification, Kitakyushu, Japan, pp. 961-968.
[22] JOHANSSON, M. RANTZER, A. (1997). Computation of Piecewise Quadratic Lyapunov Functions for Hybrid Systems, Proceedings of ECC´97, Brussels, Belgium.
[23] KAWANISHI, M., SUGIE, T. KANKI, H. (1997). BMI Global Optimization Based on Branch and Bound Method Taking Account of The Property of Local Minima, Proceedings of the 36th Conference on Decision and Control, Vol. 1, San Diego, CA, USA, pp. 781-786.
[24] KOTHARE, M.V., BALAKRISHNAN, V. MORARI, M. (1996). Robust Constrained Model Predictive Control using Linear Matrix Inequalities, Automatica, 32(10), 1361-1379 doi:10.1016/0005-1098(96)00063-5
[25] LEE, J.H. (1996). Recent Advances in Model Predictive Control and other Related Areas, CPC-V. Tahoe, City, CA, USA.
[26] LEE, K.H., KWON, W.H. LEE, J.H. (1996). Robust Receding-Horizon Control for Linear Systems with Model Uncertainties, Proceedings of the 35th CDC, Kobe, Japan, pp. 4002-4007.
[27] MAYNE, D.Q. (1996). Nonlinear Model Predictive Control: An Assessment, CPC-V. Tahoe City, CA, USA.
[28] MICHALSKA, H. MAYNE, D.Q. (1993). Robust Receding Horizon Control of Constrained Nonlinear Systems, IEEE Transactions on Automatic Control, 3.11, 1623-1633 doi:10.1109/9.262032
[29] MURRAY-SMITH, R. JOHANSEN, T.A. (eds) (1997). Multiple Model Approaches to Modelling and Control, Taylor and Francis, London.
[30] NESTEROV, Y. NEMIROVSKI, A. (1994). Interior-point Polynominal Algorithms in Convex Programming, Vol. 13 of Studies in Applied Mathematics, SIAM, Philadelphia, PA.
[31] PETTERSON, S. LENNARTSON, B. (1997). An LMI Approach for Stability Analysis of Nonlinear Systems, Proceedings of ECC´ 97, Brussels, Belgium.
[32] QIN, S.J. BADGWELL, T.A. (1996). An Overview of Industrial Model Predictive Control Technology, CPC-V. Tahoe City, USA.
[33] RANTZER, A. JOHANSSON, M. (1997). Piecewise linear quadratic optimal control, Proceedings of ACC´97, Albuquerque, NM, USA.
[34] RAWLINGS, J. B., MEADOWS, E.S. MUSKE, K.R. (1994). Nonlinear Model Predictive Control: A Tutorial and Survey, Preprints IFAC Symposium ADCHEM, Kyoto, Japan.
[35] SLUPPHAUG, O. (1998). On Robust Constrained Nonlinear Control and Hybrid Control: BMI- and MPC-based State-Feedback Schemes, PhD thesis, Norwegian University of Sci. and Tech., Department of Engng. Cybernetics, http://www.itk.ntnu.no/dr.avhandlinger/1998.
[36] SUTTON, G.J. BITMEAD, R.R. (1997). Robust Stability Theorems for Nonlinear Predictive Control, Proceedings of the 36th Conference on Decision and Control, Vol. 5, San Diego, CA, USA, pp. 4886-4891.
[37] TANAKA, K., IKEDA, T. WANG, H.O. (1996). Robust Stabilization of a class of Uncertain Nonlinear Systems via Fuzzy Control: Quadratic Stabilizability, H-Infinity Control Theory, and Linear Matrix Inequalities, IEEE Transactions on Fuzzy Systems, .1, 1-13 doi:10.1109/91.481840
[38] TUAN, H.D., HOSOE, S. TUY, H. (1997). Optimization Approach to Robust Control: Feasibility Problems, Technical Report 9601, Dep. of Electronic-Mechanical Engn. at Nagoya University. Furo-cho, Ckikusaku, Nagoya 464-01, Japan. To appear in Int. J. of Control.
[39] VAN DEN BOOM, T. (1997). Robust Nonlinear Predictive Control using Feedback Linearization and Linear Matrix Inequalities, Proceedings of ACC97, Albuquerque, NM, USA.
[40] YAMADA, Y. HARA, S. (1997). The Matrix Product Eigenvalue Problem, Proceedings of the 36th Conference on Decision and Control, Vol. 5, San Diego, CA, USA, pp. 4926-4931.
[41] YANG, T.H. POLAK, E. (1993). Moving Horizon control of nonlinear systems with input saturation, disturbances and plant uncertainty, Int. J. Control, 5.4, 875-903 doi:10.1080/00207179308923033
[42] ZAFIRIOU, E. (1990). Robust Model Predictive Control of Processes with Hard Constraints, Computers and Chemical Engineering, 14(4), 359-371 doi:10.1016/0098-1354(90)87012-E
[43] ZHENG, A. (1997). Robust Stability Analysis of Constrained Model Predictive Control, To appear in Journal of Process Control.
[44] ZHOU, K., DOYLE, J. C. GLOVER, K. (1996). Robust and Optimal Control, Prentice-Hall, Upper Saddle River, New Jersey 07632.

  title={{Constrained quadratic stabilization of discrete-time uncertain nonlinear multi-model systems using piecewise affine state-feedback}},
  author={Slupphaug, Olav and Foss, Bjarne A.},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}